GUO X P, GAO L M, GUAN P. Microstructure and mechanical properties of an advanced niobium based ultrahigh temperature alloy [J]. Materials Science Forum,2007,539-543:3690-3695.
[2]
GUO H S, GUO X P. Microstructure evolution and room temperature fracture toughness of an integrally directionally solidified Nb-Ti-Si based ultrahigh temperature alloy [J]. Scripta Materialia, 2011, 64(7): 637-640.
[3]
CHAN K S, DAVIDSON D L. Improving the fracture toughness of constituent phases and Nb-based in-situ composites by a computational alloy design approach [J]. Metallurgical and Materials Transactions A, 2003, 34(9): 1833-1849.
[4]
TEWARI R, SONG H, DEY G K, et al. Microstructural evolution in niobium based alloys [J]. Metallurgical and Materials Transactions A, 2008, 39(7): 1506-1518.
[5]
BEWLAY B P, JACKSON M R, ZHAO J C, et al. A review of very-high temperature Nb-silicide-based composites [J]. Metallurgical and Materials Transactions A, 2003, 34(10): 2043-2052.
[6]
BEWLAY B P, JACKSON M R, LIPSITT H A. The balance of mechanical and environmental properties of a multielement niobium-niobium silicide-based in situ composite [J]. Metallurgical and Materials Transactions A, 1996, 27(12): 3801-3808.
[7]
ZELENITSAS K, TSAKIROPOULOS P. Study of the role of Al and Cr additions in the microstructure of Nb-Ti-Si in situ compositions [J]. Intermetallics, 2005, 13(10): 1079-1095.
[8]
VENKATRAMAN M, NEUMANN J P. The Cr-Nb (chromium-niobium) system [J]. Journal of Phase Equilibria, 1986, 7(5): 462-466.
[9]
OKAMOTO H. Cr-Si (chromium-silicon) [J]. Journal of Phase Equilibria, 1997, 18(2): 222.
[10]
SHA J B, HIRAI H, TABARU T, et al. Mechanical properties of as-cast and directionally solidified Nb-Mo-W-Ti-Si in-situ composites at high temperatures [J]. Metallurgical and Materials Transactions A, 2003, 34(1): 85-94.
[11]
贾丽娜, 郭喜平. 合金化和热处理对难熔金属硅化物基合金组织和性能影响的研究现状[J].稀有金属材料与工程, 2007, 36(7): 1304-1308.JIA Li-na, GUO Xi-ping. Effects of alloying elements and heat treatments on the microstructure and mechanical properties of refractory metal silicide-based alloys [J]. Rare Metal Materials and Engineering, 2007, 36(7): 1304-1308.
[12]
GUO H S, GUO X P. Microstructure and microhardness of directionally solidified and heat-treated Nb-Ti-Si based ultrahigh temperature alloy [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(6): 1283-1290.
[13]
MENDIRATTA M G, DIMIDUK D M. Phase relations and transformation kinetics in the high Nb region of the Nb-Si system [J]. Scripta Metallurgica, 1991, 25(1): 237-242.
[14]
王勇, 郭喜平, 张超峰,等. 电弧熔炼Nb-Ti-Si合金的组织和室温力学性能[J].特种铸造及有色合金, 2010, 30(6): 556-561. WANG Yong, GUO Xi-ping, ZHANG Chao-feng, et al. Microstructure and ambient mechanical properties of Nb-Ti-Si based alloy prepared by consumable arc melting [J]. Special Casting and Nonferrous Alloys, 2010, 30(6): 556-561.
[15]
ZELENITSAS K, TSAKIROPOULOS P. Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb-Ti-Si in situ composites at 800℃ [J]. Materials Science and Engineering A, 2006, 416(1-2): 269-280.
[16]
TEWARI R, SONG H K, VASUDEVAN V K, et al. Microstructural characterization of multicomponent Nb-Ti-Si-Cr-Al-X alloys [J]. Metallurgical and Materials Transactions A, 2006, 37(9): 2669-2682.
[17]
MURRAY J L. The Cr-Ti (chromium-titanium) system [J]. Journal of Phase Equilibria, 1981, 2(2): 174-181.