全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2013 

PA6/POE共混物的分子动力学与介观动力学模拟

DOI: 10.3969/j.issn.1001-4381.2013.07.009, PP. 44-49

Keywords: 聚己内酰胺,聚烯烃热塑性弹性体,分子动力学,介观动力学,相容性

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了预测聚己内酰胺(PA6)与聚烯烃热塑性弹性体(POE)的相容性及其共混物的玻璃化转变温度(Tg)、力学性能和结合能,采用分子动力学(MD)和介观动力学(MesoDyn)模拟方法对PA6/POE共混物进行了研究。结果表明通过温度-比容曲线可以得到PA6/POE共混体系的Tg分别对应于PA6与POE的Tg,PA6/POE为不相容体系;MesoDyn模拟了共混物的介观形貌与动力学演变过程,通过比较混合物的有序度参数的大小判断混合物为不相容体系。本模拟方法可以作为预测聚合物共混物性能的有利工具,也可以为高聚物配方设计提供理论指导。

References

[1]  BAI S L, WANG G T, HIVER J M, et al. Microstructures and mechanical properties of polypropylene/polyamide 6/polyethelene-octene elastomer blends[J]. Polymer, 2004, 45(9): 3063-3071.
[2]  SELL C G, BAI S L, HIVER J M. Polypropylene/polyamide 6/polyethylene-octene elastomer blends[J]. Polymer, 2004, 45(17): 5785-5792.
[3]  MA L F, WEI X F, ZHANG Q. Toughening of polyamide 6 with β-nucleated thermoplastic vulcanizates based on polypropylene/ethylene-propylene-diene rubber grafted with maleic anhydride blends[J]. Materials & Design, 2012, 33(1): 104-110.
[4]  DAS A, MAHALING R N, ST?CKELHUBER K W, et al. Reinforcement and migration of nanoclay in polychloroprene/ethylene-propylene-diene-monomer rubber blends[J]. Composites Science and Technology, 2011, 71(3): 276-281.
[5]  张兴丽,孙兆伟.基于分子动力学对超晶格结构界面热阻的模拟研究[J].航空材料学报,2011,31(4):7-10.ZHANG Xing-li,SUN Zhao-wei.Molecular dynamics simulation on thermal boundary resistance of superlattice structure[J].Journal of Aeronautical Materials,2011,31(4):7-10.
[6]  王建伟,尚新春,吕国才.bcc-Fe空位浓度对辐照损伤影响的分子动力学模拟[J].材料工程,2011,(10):15-18.WANG Jian-wei,SHANG Xin-chun,LU Guo-cai.Molecular dynamics simulation of vacancy concentration on irradiation cascades damage effects in bcc-Fe[J].Journal of Materials Engineering,2011,(10):15-18.
[7]  ANDERSEN H C. Molecular dynamics simulations at constant pressure and/or temperature[J].Journal of Chemical Physics, 1980, 72(4): 2384-1-10.
[8]  BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath[J]. Journal of Chemical Physics, 1984, 81(8): 3684-1-7.
[9]  KARASAWA N, GODDARD W A. Force fields, structures, and properties of poly(vinylidene fluoride) crystals[J]. Macromolecules, 1992, 25(26): 7268-7281.
[10]  EWALD P P. Die berechnung optischer und elektrostatischer gitterpotentiale[J].Annalen der Physik,1921,369(3):253-287.
[11]  SUN H. Compass:an abinitio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds[J].Journal of Physical Chemistry B, 1998, 102(38): 7338-7364.
[12]  何曼君, 张红东, 陈维孝,等. 高分子物理[M]. 3版. 上海: 复旦大学出版社, 2007.109-122.
[13]  CLANCY T H, PUETZ M, WEINHOLD J D, et al. Mixing of isotactic and syndiotactic polypropylenes in the melt[J]. Macromolecules, 2000, 33(25): 9452-9463.
[14]  AKTEN E D, MATTICE W L. Monte Carlo simulation of head-to-head, tail-to-tail polypropylene and its mixing with polyethylene in the melt[J].Macromolecules, 2001, 34(10): 3389-3395.
[15]  QIU L, XIAO H M. Molecular dynamics study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs[J].Journal of Hazardous Materials, 2009, 164(1): 329-336.
[16]  肖继军, 黄辉, 肖鹤鸣. HMX晶体和HMX/F2311 PBXs力学性能的MD模拟研究[J]. 化学学报, 2007, 65(17): 1746-1750. XIAO J J, HUANG H, XIAO H M. MD simulation study on the mechanical properties of HMX crystals and HMX/F2311PBXs[J].Acta Chim Sinica, 2007, 65(17): 1746-1750.
[17]  TANAKA G, GOETTLER L A. Predicting the binding energy for nylon 6,6/clay nanocomposites by molecular modeling[J]. Polymer, 2002, 43(2): 541-543.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133