全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2013 

离心铸造原位生成初生Ti(AlSi)2颗粒增强Al-16Si-6Ti复合材料筒状零件的组织与性能

DOI: 10.3969/j.issn.1001-4381.2013.07.003

Keywords: Al-16Si-6Ti复合材料,初生Ti(AlSi)2,硬度,体积分数,离心铸造

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用离心铸造方法制备了Al-16Si-6Ti复合材料筒状零件,使用SEM,EDS及OM观察分析了复合材料中的微观组织,使用ImageTool测算了铸件中初生颗粒的体积分数,测试了复合材料的硬度及耐磨性能。结果表明离心铸造Al-16Si-6Ti筒状零件沿半径方向形成了具有大量初生Ti(AlSi)2颗粒的外层增强层组织,无初生颗粒的铝基体中间层组织以及含有少量初生Si颗粒的内层组织。从外壁到内壁,铸件的硬度及初生颗粒的体积分数均呈现先由高到低,然后小幅上升的变化规律。铸件外层组织具有最好的耐磨性能。在离心场中,初生Ti(AlSi)2向铸件外侧偏移、聚集,形成了高体积分数的初晶Ti(AlSi)2颗粒增强铸件外层的Al基复合材料。

References

[1]  TORABIAN H, PATHAK J P, TIWARI S N. Wear characteristics of Al-Si alloys [J]. Wear, 1994, 172(1): 49-58.
[2]  谭银元.离心铸造Al-16wt%Si合金自生梯度复合材料[J].复合材料学报,2002,19(5):47-51.TAN Yin-yuan. In situ gradient composites of Al-16wt%Si alloy by centrifugal casting [J]. Acta Materiae Compositae Sinica, 2002, 19(5):47-51.
[3]  钱建刚,张家祥,王纯,等.AZ91D镁合金表面激光等离子复合喷涂Al-Si/Al+Al2O3涂层的研究[J].航空材料学报,2011,31(3):60-64.QIAN Jian-gang,ZHANG Jia-xiang,WANG Chun,et al.Study on Al-Si/Al+Al2O3 coating of AZ91D Mg alloy by laser plasma hybrid spraying[J].Journal of Aeronautical Materials,2011,31(3):60-64.
[4]  弗兰兹·吕克特,彼得·斯托克,罗兰德·比德曼.超共晶硅铝合金汽缸衬筒及其制造方法[P].中国专利:CN1129743, 1996-08-28.
[5]  HA T K, PARK W J,AHN S, et al. Fabrication of spray-formed hypereutectic Al-25Si alloy and its deformation behavior [J]. J Mater Process Tech, 2002, 130-131:691-695.
[6]  UOZATO S, NAKATA K, USHIO M. Evaluation of ferrous powder thermal spray coatings on diesel engine cylinder bores [J]. Surf Coat Tech, 2005, 200(7):2580-2586.
[7]  BOBZIN K, ERNST F, RICHARDT K, et al. Thermal spraying of cylinder bores with the plasma transferred wire arc process [J]. Surf Coat Tech, 2008, 202(18):4438-4443.
[8]  ZHAI Y B, LIU C M, WANG K, et al. Characteristics of two Al based functionally gradient composites reinforced by primary Si particles and Si/in situ Mg2Si particles in centrifugal casting [J]. T Nonferr Metal Soc, 2010, 20(3):361-370.
[9]  FUKUI Y. Fundamental investigation of functionally gradient material manufacturing system using centrifugal force [J]. JSME International Journal Series III-Vibration Control Engineering Engineering for Industry, 1991, 34(1):144-148.
[10]  刘昌明,翟彦博,谢勇,等.内层颗粒增强缸套及其制造方法[P].中国专利:200810070197.0, 2009-01-07.
[11]  CHEN X G, FORTIER M. Formation of primary TiAlSi intermetallic compounds in Al-Si foundry alloys [J]. Mater Forum, 2004, 28: 659-665.
[12]  RAGHAVAN V. Al-Si-Ti (Aluminum-Silicon-Titanium) [J]. JPEDAV, 2005, 26(6):624-628.
[13]  CHOI C J, PARK J K. Effect of Si addition on mechanical alloying behavior and creep properties of Al-10Ti-xSi alloys [J]. Met Mater Int, 1999, 5(2):179-184.
[14]  SAHEB N, LAOUI T, DAUD A R. Influence of Ti addition on wear properties of Al-Si eutectic alloys [J]. Wear, 2001, 249(8):656-662.
[15]  ZEREN M, KARAKULAK E. Influence of Ti addition on the microstructure and hardness properties of near-eutectic Al-Si alloys [J]. J Alloy Compd, 2008, 450(1-2):255-259.
[16]  GAO T, LI P, LI Y, et al. Influence of Si and Ti contents on the microstructure, microhardness and performance of TiAlSi intermetallics in Al-Si-Ti alloys [J]. J Alloy Compd, 2011, 509(31):8013-8017.
[17]  OGAWA T, WATANABE Y, SATO H, et al. Theoretical study on fabrication of functionally graded material with density gradient by a centrifugal solid-particle method [J]. Compos Part A-Appl S, 2006, 37(12):2194-2200.
[18]  NOWOTNY H, HUSCHKA H. Studies of the partial systems Al-TiSi2, Al-ZrSi2, Al-WSi2 [J]. Monatsh Chem, 1957, 88:494-501.
[19]  BRUKL C, NOWOTNY H, SCHOB O, et al. Die Kristallstrukturen von TiSi, Ti(Al,Si)2 und Mo(Al,Si)2 [J]. Monatsh Chem, 1961, 92:781-788.
[20]  SCHOB O, NOWOTNY H, BENESOVSKY F. Die dreistoffe (titan, zirkonium, hafnium)-aluminium-siliziu [J]. Planseeber Pulvermet, 1962,(10):65-71.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133