TORABIAN H, PATHAK J P, TIWARI S N. Wear characteristics of Al-Si alloys [J]. Wear, 1994, 172(1): 49-58.
[2]
谭银元.离心铸造Al-16wt%Si合金自生梯度复合材料[J].复合材料学报,2002,19(5):47-51.TAN Yin-yuan. In situ gradient composites of Al-16wt%Si alloy by centrifugal casting [J]. Acta Materiae Compositae Sinica, 2002, 19(5):47-51.
[3]
钱建刚,张家祥,王纯,等.AZ91D镁合金表面激光等离子复合喷涂Al-Si/Al+Al2O3涂层的研究[J].航空材料学报,2011,31(3):60-64.QIAN Jian-gang,ZHANG Jia-xiang,WANG Chun,et al.Study on Al-Si/Al+Al2O3 coating of AZ91D Mg alloy by laser plasma hybrid spraying[J].Journal of Aeronautical Materials,2011,31(3):60-64.
HA T K, PARK W J,AHN S, et al. Fabrication of spray-formed hypereutectic Al-25Si alloy and its deformation behavior [J]. J Mater Process Tech, 2002, 130-131:691-695.
[6]
UOZATO S, NAKATA K, USHIO M. Evaluation of ferrous powder thermal spray coatings on diesel engine cylinder bores [J]. Surf Coat Tech, 2005, 200(7):2580-2586.
[7]
BOBZIN K, ERNST F, RICHARDT K, et al. Thermal spraying of cylinder bores with the plasma transferred wire arc process [J]. Surf Coat Tech, 2008, 202(18):4438-4443.
[8]
ZHAI Y B, LIU C M, WANG K, et al. Characteristics of two Al based functionally gradient composites reinforced by primary Si particles and Si/in situ Mg2Si particles in centrifugal casting [J]. T Nonferr Metal Soc, 2010, 20(3):361-370.
[9]
FUKUI Y. Fundamental investigation of functionally gradient material manufacturing system using centrifugal force [J]. JSME International Journal Series III-Vibration Control Engineering Engineering for Industry, 1991, 34(1):144-148.
CHEN X G, FORTIER M. Formation of primary TiAlSi intermetallic compounds in Al-Si foundry alloys [J]. Mater Forum, 2004, 28: 659-665.
[12]
RAGHAVAN V. Al-Si-Ti (Aluminum-Silicon-Titanium) [J]. JPEDAV, 2005, 26(6):624-628.
[13]
CHOI C J, PARK J K. Effect of Si addition on mechanical alloying behavior and creep properties of Al-10Ti-xSi alloys [J]. Met Mater Int, 1999, 5(2):179-184.
[14]
SAHEB N, LAOUI T, DAUD A R. Influence of Ti addition on wear properties of Al-Si eutectic alloys [J]. Wear, 2001, 249(8):656-662.
[15]
ZEREN M, KARAKULAK E. Influence of Ti addition on the microstructure and hardness properties of near-eutectic Al-Si alloys [J]. J Alloy Compd, 2008, 450(1-2):255-259.
[16]
GAO T, LI P, LI Y, et al. Influence of Si and Ti contents on the microstructure, microhardness and performance of TiAlSi intermetallics in Al-Si-Ti alloys [J]. J Alloy Compd, 2011, 509(31):8013-8017.
[17]
OGAWA T, WATANABE Y, SATO H, et al. Theoretical study on fabrication of functionally graded material with density gradient by a centrifugal solid-particle method [J]. Compos Part A-Appl S, 2006, 37(12):2194-2200.
[18]
NOWOTNY H, HUSCHKA H. Studies of the partial systems Al-TiSi2, Al-ZrSi2, Al-WSi2 [J]. Monatsh Chem, 1957, 88:494-501.
[19]
BRUKL C, NOWOTNY H, SCHOB O, et al. Die Kristallstrukturen von TiSi, Ti(Al,Si)2 und Mo(Al,Si)2 [J]. Monatsh Chem, 1961, 92:781-788.
[20]
SCHOB O, NOWOTNY H, BENESOVSKY F. Die dreistoffe (titan, zirkonium, hafnium)-aluminium-siliziu [J]. Planseeber Pulvermet, 1962,(10):65-71.