KIM Y W. Intermetallic alloys based on gamma titanium aluminide[J]. JOM, 1989, 41(7): 24-30.
[4]
CHAN K S, ONSTOTT J, KUMAR K S. The fracture resistance of a binary TiAl alloy[J]. Metallurgical and Materials Transactions A, 2000, 31 (1): 71-80.
[5]
CHAN K S, KIM Y W. Relationships of slip morphology, microcracking, and fracture resistance in a lamellar TiAl alloys[J]. Metallurgical and Materials Transactions A, 1994, 25(6): 1217-1228.
[6]
HUANG S C, HALL E L. Plastic deformation and fracture of binary TiAl base alloy[J].Metall Trans A,1991,22(2):427-439.
[7]
CHAN K S, KIM Y W. Influence of microstructure on crack-tip micromechanics and fracture behaviors of a two phase TiAl alloy[J]. Metall Trans A,1992, 23(6): 1663-1677.
[8]
KIM Y W. Ordered intermetallic alloys, partⅢ: gamma titanium aluminides[J]. JOM, 1994, 46(7): 30-39.
[9]
邓忠勇,黄伯云,贺跃辉,等.显微组织对TiAl 基合金超塑性的影响[J].材料工程,1999,(12):26-43.DENG Z Y, HUANG B Y, HE Y H, et al. Effect of microstructure on the superplasticity of TiAl-based alloy[J]. Journal of Materials Engineering, 1999, (12): 26-43.
[10]
KIM Y W. Effects of microstructure on the deformation and fracture of γ-TiAl alloys[J]. Materials Science and Engineering: A, 1995, 192-193: 519-533.
[11]
MERCER C, SOBOYEJO W O. Hall-Petch relationships in gamma titanium aluminides[J]. Scripta Metall, 1996, 35(1): 17-22.
[12]
CHU W Y, THORNPSON A W. Effects of grain size on yield strength in TiAl[J]. Scripta Metall, 1991, 25(3): 641-644.
[13]
SOBOYEJO W O, SCHWARTZ D S, SASTRY S M L. An investigation of the fracture behavior of gamma based titanium aluminides: effects of annealing in the α+γ and α2 +γ phase fields[J]. Metall Trans A, 1992, 23(7): 2039-2059.
[14]
孔凡涛,陈子勇,田竞,等.提高TiAl基合金室温塑性的方法[J].稀有金属材料与工程,2003,32(2):81-86. KONG F T, CHEN Z Y, TIAN J, et al. Methods of improving room temperature ductility of TiAl based alloys[J]. Rare Metal Materials and Engineering, 2003, 32(2): 81-86.