王春水,彭志方,于洋洋. 人工神经网络预测变形高温合金的持久强度[J]. 金属学报,2003,39(12):1251-1254. WANG C S, PENG Z F, YU Y Y. Prediction of creep-rupture strength of wrought Ni base superalloys using artificial neural network[J]. Acta Metallurgica Sinica, 2003,39(12):1251-1254.
[3]
SAMMAN T A, GOTTSTEIN G. Dynamic recrystallization during high temperature deformation of magnesium[J].Materials Science and Engineering: A, 2008,490(1-2):411-420.
[4]
李成侣,潘清林,刘晓艳,等. 2124 铝合金的热压缩变形和加工图[J]. 材料工程,2010,(4):10-14.LI C L, PAN Q L, LIU X Y, et al. Hot compression deformation and processing maps of 2124 aluminum alloy[J]. Journal of Materials Engineering, 2010,(4):10-14.
[5]
PRASAD Y V R K, GEGEL H L, DORAIVELU S M, et al.Modeling of dynamic material behavior in hot deformation:forging of Ti-6242[J]. Metallurgical Transactions A, 1984,15(10):1883-1892.
[6]
PRASAD Y V R K, RAO K P. Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300-950℃[J]. Materials Science and Engineering: A, 2005,391(1-2):141-150.
[7]
PRASAD Y V R K, RAO K P. Processing maps for hot deformation of rolled AZ31 magnesium alloy plate:anisotropy of hot workability[J]. Materials Science and Engineering:A, 2008,487(1-2):316-327.
[8]
GANESAN G, RAGHUKANDAN K, KARTHIKEYAN R, et al. Development of processing map for 6061 Al-15% SiCp through neural networks[J].Journal of Materials Processing Technology, 2005,166(3):423-429.
[9]
张凯锋, 尹德良, 王国峰, 等. 热轧AZ31镁合金超塑变形中的微观组织演变及断裂行为[J]. 航空材料学报, 2005,25(1):5-10.ZHANG K F, YIN D L, WANG G F, et al. Microstructure evolution and fracture behavior in superplastic deformation of hot-rolled AZ31 Mg Alloy[J]. Journal of Aeronautical Materials, 2005, 25(1):5-10.
[10]
LEE S, CHEN Y H, WANG J Y. Isothermal sheet metal formability of magnesium alloy AZ31 and AZ61[J]. Journal of Materials Processing Technology, 2002,124(1-2):19-24.
[11]
余琨, 蔡志勇, 王晓艳, 等. 半连续铸造AZ31B 镁合金连续热轧变形行为的数值模拟[J]. 材料工程, 2010,(9):33-39.YU K, CAI Z Y, WANG X Y, et al. Simulation of multi-pass hot rolling process of direct-chilled AZ31B magnesium alloy[J]. Journal of Materials Engineering, 2010,(9):33-39.
[12]
KIM H Y, KWON H C, LEE H W, et al. Processing map approach for surface defect prediction in the hot bar rolling[J]. Journal of Materials Processing Technology, 2008,205(1-3):70-80.
[13]
NARAYANA MURTY S V S, NAGESWARA RAO B. On the development of instability criteria during hotworking with reference to IN718[J]. Materials Science and Engineering: A, 1998, 254(1-2):76-82.
[14]
SRINIVASAN N, PRASAD Y V R K, RAO P R. Hot deformation behavior of Mg-3Al alloy-a study using processing map[J]. Materials Science and Engineering: A, 2008,476(1-2):146-156.
[15]
PRASAD Y V R K, SASIDHARA S. Hot Working Guide: a Compendium of Processing Maps[M]. OH: ASM International, Metals Park, 1997.
[16]
蒋宗礼. 人工神经网络导论[M]. 北京:高等教育出版社,2001.39-48.
[17]
CAVALIERE P. Flow curve prediction of an Al-MMC under hot working conditions using neural networks[J]. Comput Mater Sci, 2007,38(4):722-726.
[18]
REDDY N S, LEE Y H, PARK C H, et al. Prediction of flow stress in Ti-6Al-4V alloy with an equiaxed α+β microstructure by artificial neural networks[J]. Mater Sci Eng: A, 2008,492(1-2):276-282.
[19]
LIN Y C, ZHANG J, ZHONG J. Application of neural networks to predict the elevated temperature flow behavior of a low alloy steel[J]. Comput Mater Sci, 2008,43(4):752-758.