YEONG T P. Measurement and modelling of diffusional transformation of austenite in C-Mn steels. Taibei: National Sun Yat-Sen University, 2001.
[2]
UMEMOTO M, GUO Z H, TAMURA I. Effect of cooling rate on grain size of ferrite in a carbon steel[J]. Materials Science and Technology, 1987, 3(4): 249-255.
胡良均, 尚成嘉, 王学敏, 等. 弛豫-析出-控制相变技术中冷却速度对组织的影响[J]. 北京科技大学学报, 2004, 26(3): 260-263. HU Liang-jun,SHANG Cheng-jia,WANG Xue-min,et al. Effect of relaxation process and cooling rate on intermediate phase transformation structure refinement[J]. Journal of University of Science and Technology Beijing, 2004, 26(3): 260-263.
[6]
张丽芳, 刘永长. 冷却速度对Fe-4Cr合金奥氏体-铁素体相变的影响[J]. 材料热处理学报, 2011, 32(9): 58-62. ZHANG Li-fang,LIU Yong-chang. Effect of cooling rate on austenite-ferrite phase transformation of Fe-4Cr alloy[J]. Transactions of Materials and Heat Treatment, 2011, 32(9): 58-62.
[7]
王国栋. 新一代控制轧制和控制冷却技术与创新的热轧过程[J]. 东北大学学报: 自然科学版, 2009, 30(7): 913-922.WANG Guo-dong. New generation TMCP and innovative hot rolling process[J]. Journal of Northeastern University:Natural Science, 2009, 30(7): 913-922.
[8]
BUYYICHILLI G, ANELLI E. Present status and perspectives of european research in the field of advanced structural steels[J]. ISIJ International, 2002, 42(12): 1354-1363.
[9]
SUN Y K, WU D. Effect of ultra-fast cooling on microstructure of large section bars of bearing steel[J]. Journal of Iron and Steel Research International, 2009, 16(5): 61-65.
[10]
李曼云, 孙本荣. 钢的控制轧制和控制冷却技术手册[M]. 北京: 冶金工业出版社, 1990.
[11]
王立军, 蔡庆伍, 余伟, 等. 低碳低合金钢的连续冷却相变组织特征及其形成机制[J]. 材料工程, 2010, (8): 29-33.WANG Li-jun, CAI Qing-wu, YU Wei, et al. Characterization and formation mechanism of microstructures of low carbon low alloy steel during continuous cooling transformation[J]. Journal of Materials Engineering, 2010, (8): 29-33.
[12]
吉玲康, 张伟卫, 高慧临, 等. X100管线钢的连续冷却转变[J]. 材料工程, 2011, (2): 10-16.JI Ling-kang, ZHANG Wei-wei, GAO Hui-lin, et al. Continuous cooling transformation of X100 pipeline steel[J]. Journal of Materials Engineering, 2011, (2): 10-16.