全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2013 

烧结TiH2粉末制备钛合金的工艺及组织

DOI: 10.3969/j.issn.1001-4381.2013.10.011, PP. 64-70

Keywords: 粉末冶金,TiH2,球磨,成型,烧结,脱氢,显微组织

Full-Text   Cite this paper   Add to My Lib

Abstract:

以TiH2粉末为原料,通过组元球磨混合、压制成形和烧结工艺制备钛合金。用扫描电镜对球磨过程TiH2粉末的粒度、形貌变化以及烧结CP-Ti,Ti-6Al-4V合金的组织形貌进行了观察;采用热重分析方法研究了TiH2粉末脱氢的特性;用热膨胀技术研究了TiH2,TiH2-Al-V两种粉末压坯的烧结致密化特性。结果表明TiH2粉末经过球磨后迅速变细,其粒度随球磨时间的延长而减小,粉末形貌由原来的不规则形状逐渐变为等轴状;TiH2粉末在烧结过程的脱氢将使α-Ti产生强烈收缩、同时因脱氢后获得的新鲜钛表面所发生的快速粘接而使烧结体迅速致密、得到相对密度大于99%的烧结坯体;TiH2-Al-V粉末压坯在烧结时因为伴随着合金元素的溶解而使其烧结致密特性不如纯TiH2粉末压坯的好;TiH2粉末经过成型、烧结脱氢工艺可获得典型的等轴状纯钛组织,TiH2-Al-V粉末经过相同工艺可获得典型的层片状α+β钛合金组织、且合金元素分布均匀。

References

[1]  IVASISHIN O M, SHEVCHENKO S V, SEMIATIN S L.Effect of crystallographic texture on the isothermal beta grain-growth kinetics of Ti-6Al-4V[J]. Materials Science and Engineering, 2002, 332(1-2):343-350.
[2]  IVASISHIN O M, MARKOVSKY P E, SEMIATIN S L, et al. Aging response of coarse-and fine-grained β titanium alloys[J]. Materials Science and Engineering, 2005, 405(25):296-305.
[3]  BHOSLE V, BABURAJ E G, MIRANOVA M, et al. Dehydrogenation of TiH2[J]. Materials and Engineering:A, 2003, 356(1-2):190-199.
[4]  王桂生, 田荣璋.钛的应用技术[M].长沙:中南大学出版社, 2007.
[5]  GEMELLI E, DE JESUS J, CAMARGO N H A, et al.Microstructural study of a titanium-based biocomposite produced by the powder metallurgy process with TiH2 and nanometric β-TCP powders[J]. Materials Science and Engineering:C, 2012, 32(4):1011-1015.
[6]  QIU J W, LIU Y, LIU Y B, et al. Microstructures and mechanical properties of titanium alloy connecting rod made by powder forging process[J]. Materials and Design, 2012, 33:213-219.
[7]  AZEVEDO C R F, RODRIGUES D, BENEDUCE NETO F. Ti-Al-V powder metallurgy(PM) via the hydrogenation-dehydrogenation(HDH) process[J]. Journal of Alloys and Compounds, 2003, 353(1-2):217-227.
[8]  ZHOU L, LIU H J. Effect of 0.5wt% hydrogen addition on microstructural evolution of Ti-6Al-4V alloy in the friction stir welding and post-weld dehydrogenation process[J]. Materials Characterization, 2011, 62(11):1036-1041.
[9]  LUO L S, SU Y Q, GUO J J, et al. Formation of titanium hydride in Ti-6Al-4V alloy[J].Journal of Alloys and Compounds, 2006, 425(30):140-144.
[10]  BOLZONI L, RUIZ-NAVAS E M, NEUBAUER E, et al. Inductive hot-pressing of titanium and titanium alloy powders[J]. Materials Chemistry and Physics, 2012, 131(3): 672-679.
[11]  LIU H, HE P, FENG J C, et al. Kinetic study on nonisothermal dehydrogenation of TiH2 powders[J]. International Journal of Hydrogen Energy, 2009, 34(7):3018-3025.
[12]  SHAN D B, ZONG Y Y, LU T F, et al.Microstructural evolution and formation mechanism of FCC titanium hydride in Ti-6Al-4V-xH alloys[J]. Journal of Alloys and Compounds, 2007, 427(16):229-234.
[13]  CARMAN A, ZHANG L C, IVASISHIN O M, et al.Role of alloying elements in microstructure evolution and alloying elements behaviour during sintering of a near-titanium alloy[J]. Materials Science and Engineering:A, 2011, 528(3):1686-1693.
[14]  DABHADE V V, RAMA MOHAN R T, RAMAKRISHNAN P. Synthesis of nanosized titanium powder by high energy milling[J]. Applied Surface Science, 2001, 182(3-4): 390-393.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133