JIANG B, FANG M H, HUANG Z H, et al.Mechanical and thermal properties of LaMgAl11O19[J].Materials Research Bulletin, 2010, 45(10):1506-1508.
[2]
WANG Y H, OUYANG J H, LIU Z G, et al.Influence of dysprosium oxide doping on thermophysical properties of LaMgAl11-O19 ceramics[J]. Materials & Design, 2010, 31(7):3353-3357.
[3]
PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566):280-284.
[4]
MARTENA M, BOTTO D, FINO P, et al. Modelling of TBC system failure: stress distribution as a function of TGO thickness and thermal expansion mismatch[J]. Engineering Failure Analysis, 2006, 13(3):409-426.
[5]
HE M Y, HUTCHINSON J W, EVANS A G. Mechanics based scaling laws for the durability of thermal barrier coating[J]. Progress in Materials Science, 2001, 46(3-4):249-271.
[6]
RABIEI A, EVANS A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings[J]. Acta Materialia, 2006, 48(15):3963-3976.
[7]
AKTAA J, SFAR K, MUNZ D. Assessment o f TBC systems failure mechanisms using a fracture mechanics approach[J]. Acta Materialia, 2005, 53(16):4399-4413.
[8]
TRUNOVA O, BECK T, HERZOG R, et al. Damage mechanisms and lifetime behavior of plasma sprayed thermal barrier coating systems for gas turbines-part I: experiments[J]. Surface and Coatings Technology, 2008, 202(20):5027-5032.
[9]
STRANGMAN T, RAYBOULD D, JAMEEL A, et al. Damage mechanisms, life prediction, and development of EB-PVD thermal barrier coatings for turbine air foils[J]. Surface and Coatings Technology, 2007, 202(4-7):658-664.
[10]
GUO H B, GONG S K, KHOR K A, et al. Effect of thermal exposure on the microstructure and properties of EB-PVD gradient thermal barrier coatings[J]. Surface and Coatings Technology, 2003, 168(1):23-29.
[11]
DEMASI-MARCIN J T, GUPTA D K. Protective coatings in the gas turbine engine[J]. Surface and Coatings Technology, 1994, 68-69:1-9.
[12]
HAYNES J A, RIGNEY E D, FERBER M K. Oxidation and degradation of a plasma-sprayed thermal barrier coating system[J]. Surface and Coatings Technology, 1996, 86-87:102.
[13]
NIRANATLUMPONG P, PONTON C B, EVANS H E. The failure of protective oxides on plasma-sprayed NiCrAlY overlay coatings[J]. Oxidation of Metals, 2000, 53(3/4):241.
[14]
HAYNES J A. Potential influences of bond coat impurities and void growth on premature failure of EB-PVD TBCs[J]. Scripta Materialia, 2001, 44(7):1147-1152.
[15]
RABIEI A, EVENS A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings[J]. Acta Materialia, 2000, 48(15):3963-3976.
[16]
THURN G, SCHEIDER G A, BAHR H A. Toughness anisotropy and damage behavior of plasma sprayed ZrO2 thermal barrier coatings[J]. Surface and Coatings Technology, 2000, 123(2-3):147-158.
[17]
李吉皎, 房明浩, 黄赛芳, 等. LaMgAl11O19加入对8YSZ材料力学性能的影响[J]. 人工晶体学报, 2011, 4(1):193-196. LI J J, FANG M H, HUANG S F, et al. Effects of LaMgAl11-O19 addition on the mechanical properties of 8YSZ materials[J]. Journal of Synthetic Crystals, 2011, 4(1):193-196.
[18]
CHEN X L, ZHAO Y, FAN X Z, et al. Thermal cycling failure of new LaMgAl11O19/YSZ double ceramic top coat thermal barrier coating systems[J]. Surface and Coatings Technology, 2011, 205(10):3293-3300.
[19]
MA W, GONG S K, LI H F, et al. Novel thermal barrier coatings based on La2Ce2O7/8YSZ double ceramic-layer systems deposited by electron beam physical vapor deposition[J]. Surface and Coatings Technology, 2008, 202(12):2704-2708.
[20]
KHOR K A, DONG Z L, GU Y W. Plasma sprayed functionally graded thermal barrier coatings[J]. Materials Letters, 1999, 38(6):437-444.
[21]
ZHAI C S, WANG J, LI F, et al. Thermal shock properties and failure mechanism of plasma sprayed Al2O3/TiO2 nanocomposite coatings[J]. Ceramics International, 2005, 31(6):817-824.
[22]
PORTINHA A, TEIXEIRA V, CARNEIRO J, et al. Characterization of thermal barrier coatings with a gradient in porosity[J]. Surface and Coatings Technology, 2005, 195(2-3):241-251.
[23]
CHEN X L, GU L J, ZOU B L, et al.New functionally graded thermal barrier coating system based on LaMgAl11O19/YSZ prepared by air plasma spraying[J]. Surface and Coatings Technology, 2012, 206(8-9):2265-2274.
[24]
XU Z H, HE L M, MU R D, et al. Influence of the deposition energy on the composition and thermal cycling behavior of La2-(Zr0.7Ce0.3)2O7 coatings[J]. Journal of the European Ceramic Society, 2009, 29(9):1771-1779.
[25]
SCHULZ U, LEYENS C, FRITSCHER K. Some recent trends in research and technology of advanced thermal barrier coatings[J]. Aerospace Science and Technology, 2003, 7(1):73-80.
[26]
EVANS A G, MUMM D R, HUTCHINSON J W. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(5):505-555.
[27]
MUMM D R, EVANS A G, SPITSBERG I T. Characterization of a cyclic displacement instability for a thermal grown oxide in a thermal barrier system[J]. Acta Materialia, 2001, 49(12):2329-2340.
[28]
WRIGHT P K. Influence of cyclic strain on life a PVD TBC[J]. Materials Science and Engineering:A, 1998, 245(2):191-200.
[29]
曹学强.热障涂层材料[M].北京:科学出版社, 2007.23-25, 231-245.
[30]
BANSAL N P, ZHU D M. Effects of doping on thermal conductivity of pyrochlore oxides for advanced thermal barrier coatings[J]. Materials Science and Engineering:A, 2007, 459(1-2):192-195.
[31]
SARUHAN B, FRANCOIS P, FRITSCHER K, et al. EB-PVD processing of pyrochlore-structured La2Zr2O7-based TBCs[J]. Surface and Coatings Technology, 2004, 182(2-3):175-183.
[32]
VAβEN R, TRAEGER F, ST?VER D. New thermal barrier coatings based on pyrochlore/YSZ double-layer systems[J]. International Journal of Applied Ceramic Technology, 2004, 1(4): 351-361.
[33]
WU J C, LU S Y. Patch-distribution effect on diffusion-limited process in dilute suspension of partially active spheres[J]. Journal of Chemical Physics, 2006, 124(2):340-341.
[34]
WU J, WEI X, PADTURE N P, et al. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications[J]. Journal of the American Ceramic Society, 2002, 85(12):3031-3035.
[35]
RAMACHANDRAN C S, BALASUBRAMANIAN V, ANATHAPADMANABHAN P V. Synthesis, spheroidization and spray deposition of lanthanum zirconate using thermal plasma process[J]. Surface and Coatings Technology, 2012, 206(13):3017-3035.
[36]
KHOR K A, DONG Z L, GU Y W. Plasma sprayed functionally graded thermal barrier coatings[J]. Materials Letters, 1999, 38(6):437-444.
[37]
RONERT VAβEN, MARIA O J, et al. Overview on advanced thermal barrier coatings[J]. Surface and Coatings Technology, 2010, 205(4):938-942.
[38]
LEVI C G. Emerging materials and processes for thermal barrier systems[J]. Current Opinion in Solid State and Materials Science, 2004, 8(1):77-91.
[39]
徐军, 马笑山, 沈雅芳, 等.磁铅石结构晶体LaMgAl11O19形态学[J].材料科学进展, 1991, 5(6):502-507. XU J, MA X S, SHEN Y F, et al. Crystal morphology of magnetoplumbite structure LaMgAl11O19[J]. Materials Science Progress, 1991, 5(6):502-507.
[40]
KAHN A, LEJUS A M, MADSAC M, et al. Preparation, structure, optical, and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19)[J].Journal of Applied Physics, 1981, 52(11):6863-6869.
[41]
XIE L, CORMACK A N. Cation distribution in magnetoplumbite and β"-alumina structures original[J]. Materials Letters, 1990, 9(11):474-479.
[42]
徐金光, 田志坚, 王军威, 等. 超临界干燥方法对甲烷燃烧催化剂LaMnAl11O19结构及活性的影响[J]. 催化学报, 2002, 23(5):477-480. XU J G, TIAN Z J, WANG J W, et al. Effect of supercritical drying on structure and activity of Mn-substituted hexaaluminate catalyst for methane combustion[J]. Chinese Journal of Catalysis, 2002, 23(5):477-480.
[43]
ZHANG Y F, LI Q, MA X, et al. Synthesis and high-pressure sintering of lanthanum magnesium hexaaluminate[J]. Materials Letters, 2008, 62(6-7):923-925.
[44]
CAO X Q, ZHANG Y F, ZHANG J F, et al. Failure of the plasma-sprayed coating of lanthanum hexaluminate[J]. Journal of the European Ceramic Society, 2008, 28(10):1978-1986.
[45]
CHEN X L, ZHAO Y, GU L J, et al. Hot corrosion behavior of plasma sprayed YSZ/LaMgAl11O19 composite coatings in molten sulfate-vanadate salt[J]. Corrosion Science, 2011, 53(6):2335-2343.
[46]
齐峰, 樊自拴, 孙冬柏, 等. 新型热障涂层材料镁基六铝酸镧喷涂粉末的制备[J]. 材料工程, 2006, (7):14-18. QI F, FANG Z S, SUN D B, et al. Preparation of LaMgAl11O19 spray powder—a new thermal barrier coatings material[J]. Journal of Materials Engineering, 2006, (7):14-18.
[47]
LIU H Z, LIU Z G, OUYANG J H, et al. Thermo-optical properties of LaMg1-xNixAl11O19(0≤x≤1) hexaaluminates for metallic thermal protection system[J]. Materials Letters, 2011, 65(17):2614-2617.
[48]
姜斌, 房明浩, 黄朝晖, 等.Gd3+掺杂La1-xGdxMgAl11O19(x=0~1)陶瓷的制备及热学性能[J]. 硅酸盐学报, 2010, 38(7):1263-1267. JIANG B, FANG M H, HUANG C H, et al. Preparation of Gd3+-doped La1-xGdxMgAl11O19(x=0-1) ceramics and its thermal properties[J]. Journal of the Chinese Ceramic Society, 2010, 38(7):1263-1267.
[49]
CHEN X L, ZHANG Y F, ZHONG X H, et al. Thermal cycling behaviors of the plasma sprayed thermal barrier coatings of hexaluminates with magnetoplumbite structure[J]. Journal of the European Ceramic Society, 2010, 30(7):1649-1657.
[50]
BANSAL N P, ZHU D M. Thermal properties of oxides with magnetoplumbite structure for advanced thermal barrier coatings[J]. Surface and Coatings Technology, 2008, 202(12):2698-2703.
[51]
ZHANG J F, ZHONG X H, CHENG Y L, et al. Thermal-shock resistance of LnMgAl11O19(Ln = La, Nd, Sm, Gd) with magnetoplumbite structure[J]. Journal of Alloys and Compounds, 2009, 482(1-2):376-381.
[52]
WANG Y H, LIU Z G, OUYANG J H, et al. Preparation and thermophysical properties of LaMgAl11O19-Yb3Al5O12 ceramic composites[J]. Ceramics International, 2011, 37(7):2489-2493.
[53]
GADOW R, LISCHKA M. Lanthanum thermal barrier coatings for gas turbine application-materials and process development[J]. Surface and Coatings Technology, 2002, 151-152:392-399.
[54]
FRIEDRICH C, GADOW R, SCHIRMER T. Lanthanum hexaaluminate-a new material for atmospheric plasma spraying of advanced thermal barrier coatings[J]. Surface and Coatings Technology, 2001, 10(4):592-598.
[55]
WANG Y H, OUYANG J H, LIU Z G. Preparation and thermo-physical properties of La1-xNdxMgAl11O19(x = 0, 0.1, 0.2) ceramics[J]. Journal of Alloys and Compounds, 2009, 485(1-2):734-738.