全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2014 

生物医用TC20钛合金高温变形行为及本构关系

DOI: 10.11868/j.issn.1001-4381.2014.07.004, PP. 16-21

Keywords: Ti-6.0Al-7.0Nb,热压缩,应力应变,本构方程

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用Gleeble-1500热模拟试验机对TC20合金进行等温热模拟压缩实验。分析该合金在变形温度为750~900℃,应变速率为0.001~1.0s-1条件下的变形行为及流变应力的变化规律。分析不同变形温度和变形速率下的热变形行为及其微观组织的演变规律,观察结果表明流变应力和微观组织受变形温度和应变速率显著影响;流变应力随变形温度的升高和应变速率的降低而降低,流变应力在经历加工硬化的上升阶段后达到硬化和软化相平衡的稳定阶段。采用双曲正弦模型确定该合金的变形应力指数n和变形激活能Q分别为4.43和340.908kJ/mol,建立了相应的热变形本构方程为ε=2.706×1016[sinh(0.0091σ)]5.72exp[-340908/(RT)]。

References

[1]  EISENBARTH E, VELTEN D. Biocompatibility of beta-stabilizing elements of titanium alloys [J]. Biomaterials, 2004, 25:5705-5713.
[2]  NINOMI M. Recent metallic materials for biomedical applications [J].Metal Mater Trans A,2002,33:477-486.
[3]  NINOMI M. Recent mechanical properties of biomedical titanium alloys [J].Materials Science and Engineering: A, 1998,243:231-236.
[4]  黄永光.外科植入用钛及钛合金标准发展现状[J]. 钛工业进展,2010,(1):1-8.HUANG Yong-guang. Developments of titanium and titanium alloy and standardization for surgical implant[J]. Titanium Industry Progress, 2010,(1):1-8.
[5]  鲍如强,黄旭,黄利军,等.Ti-10V-2Fe-3Al合金热变形的研究[J].材料工程,2003,(12):3-6.BAO Ru-qiang, HUANG Xu, HUANG Li-jun, et al. Investigation behavior of Ti-10V-2Fe-3Al alloy[J].Journal of Materials Engineering, 2003,(12):3-6.
[6]  滑勇之,关立文,刘辛军,等.铝合金7050-T7451高温高应变率本构方程及修正[J]. 材料工程, 2012,(12):7-13.HUA Yong-zhi, GUAN Li-wen, LIU Xin-jun, et al. Research and revise on constitutive equation of 7050-T7451 aluminum alloy in high strain rate and high temperature condition[J]. Journal of Materials Engineering, 2012,(12): 7-13.
[7]  沈昌武.TA15、TC11钛合金热变形材料本构模型研究.西安:西北工业大学,2007. 24-32.
[8]  SESHACHARYULU T,MEDEIROS S C,FRAZIER W G. Hot working of commercial Ti-6Al-4V with an equiaxed α-β microstructure: materials modeling considerations [J]. Materials Science and Engineering: A, 2000, 284:184-194.
[9]  彭益群.热变形参数对合金组织与流变应力的影响研究.北京:北京航空航天大学,1989.50-52.
[10]  GEETHA M, SINGH A K,ASOKAMANI R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review[J]. Prog Mater Sci,2009,54(3):397-425.
[11]  FILIP R, KUBIAK K, ZIAJIA W. The effect of microstructure on the mechanical properties of two-phase titanium alloys [J]. Journal of Materials Processing Technology,2003,133:84-89.
[12]  叶文君,脱祥明,王世洪.β21S 钛合金热压缩变形行为[J].稀有金属,2002,26(1):23-27. YE Wen-jun, TUO Xiang-ming, WANG Shi-hong. Hot press deformation behavior of β21S titanium alloy [J].Rare Metals, 2002,26(1):23-27.
[13]  寇琳媛,金能萍,张辉,等.7150 铝合金高温热压缩变形流变应力行为[J]. 中国有色金属学报,2010,20(1):43-48. KOU Lin-yuan, JIN Neng-ping, ZHANG Hui, et al. Flow stress behavior of 7150 aluminum alloy during hot compression deformation at elevated temperature[J].The Chinese Journal of Nonferrous Metal,2010,20(1):43-48.
[14]  MAJTA J, BATOR A. Effects of dynamic grain boundary migration during the hot compression of high stacking fault energy metals[J]. Journal of Materials Processing Technology, 2002, 125/126:77-83.
[15]  JONAS J J, SELLARS C M, TEGART W J. Strength and structure under hot working conditions[J].Tegart Int Metal Reviews,1996,14(2):1-24.
[16]  曾卫东,周义刚,俞汗青.应用Zener-Hollomon因子Ti-17的高温压缩行为[J].西北工业大学学报,1996,14(2):166-168. ZENG Wei-dong, ZHOU Yi-gang,YU Han-qing. On mechanism underlying high temperature compressive behavior of Ti-17 alloy [J]. Journal of Northwestern Polytechnical University, 1996, 14(2):166-168.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133