MILLER R A. Current status of thermal barrier coatings-an overview[J]. Surface and Coatings Technology, 1987, 30(1): 1-11.
[2]
韩萌, 黄继华, 陈树海. 热障涂层应力与失效机理若干关键问题的研究进展与评述[J]. 航空材料学报, 2013, 33(5): 83-98.HAN M, HUANG J H, CHEN S H. Research progress and review on key problems of stress and failure mechanism of thermal barrier coating[J]. Journal of Aeronautical Materials, 2013, 33(5): 83-98.
[3]
SHEFFLER K D, GUPTA D K. Current status and future trends in turbine application of thermal barrier coatings[J]. Journal of Engineering for Gas Turbines and Power, 1988, 110(4): 605-609.
[4]
钟锦岩, 牟仁德, 何英, 等. NiCoCrAlYHf 涂层与一种Ni基单晶高温合金循环氧化行为研究[J]. 材料工程, 2013,(8): 28-35.ZHONG J Y, MU R D, HE Y, et al. Thermal cyclic oxidation behavior between NiCoCrAlYHf bond coat and a kind of Ni-based single crystal superalloy[J]. Journal of Materials Engineering, 2013,(8): 28-35.
[5]
SCHLICHTING K W, PADTURE N P, JORDAN E H, et al. Failure modes in plasma-sprayed thermal barrier coatings[J]. Materials Science and Engineering: A, 2003, 342(1): 120-130.
[6]
BUSSO E P, LIN J, SAKURAI S, et al. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system Part I: model formulation[J]. Acta Materialia, 2001, 49(9): 1515-1528.
[7]
BUSSO E P, LIN J, SAKURAI S, et al. A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system Part II: life prediction model[J]. Acta Materialia, 2001, 49(9): 1529-1536.
[8]
CHEN W R, WU X, DUDZINSKI D. Influence of thermal cycle frequency on the TGO growth and cracking behaviors of an APS-TBC[J]. Journal of Thermal Spray Technology, 2012, 21(6): 1294-1299.
[9]
KERREBROCK J L. Aircraft Engines and Gas Turbines[M]. Cambridge, MA: MIT Press, 1992.
[10]
HE M Y, MUMM D R, EVANS A G. Criteria for the delamination of thermal barrier coatings: with application to thermal gradients[J]. Surface and Coatings Technology, 2004, 185(2): 184-193.
[11]
DEMASI J T, SHEFFLER K D, ORITIZ M. Thermal Barrier Coating Life Prediction Model Development. NASA-CR-182230, 1989.
[12]
EVANS A G, MUMM D R, HUTCHINSON J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(5): 505-553.
[13]
EVANS A G, HE M Y, HUTCHINSON J W. Mechanics-based scaling laws for the durability of thermal barrier coatings[J]. Progress in Materials Science, 2001, 46(3): 249-271.
[14]
HE M Y, EVANS A G, HUTCHINSON J W. The ratcheting of compressed thermally grown thin films on ductile substrates[J]. Acta Materialia, 2000, 48(10): 2593-2601.
[15]
QIAN G. Fracture Analysis and Microstructural Modeling of Thermal Spray Coatings. New York: School of Mechanical Engineering, State University of New York, USA, 1999.
[16]
BRODIN H, ESKNER M. The influence of oxidation on mechanical and fracture behaviour of an air plasma-sprayed NiCoCrAlY bondcoat[J]. Surface and Coatings Technology, 2004, 187(1): 113-121.
[17]
CHEN W R, WU X, MARPLE B R, et al. Oxidation and crack nucleation/growth in an air-plasma-sprayed thermal barrier coating with NiCrAlY bond coat[J]. Surface and Coatings Technology, 2005, 197(1): 109-115.
[18]
EVANS H E, TAYLOR M P. Diffusion cells and chemical failure of MCrAlY bond coats in thermal-barrier coating systems[J]. Oxidation of Metals, 2001, 55(1-2): 17-34.
[19]
王亚梅. 热障涂层破坏机理及寿命分析方法的研究. 北京:北京航空航天大学, 2009.
[20]
CHE C, WU G Q, QI H Y, et al. Depletion model of aluminum in bond coat for plasma-sprayed thermal barrier coatings [J]. Advanced Materials Research, 2009,75: 31-35.