全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2014 

变形Mg-1.5Zn-0.2Gd合金退火过程中组织与织构演变过程

DOI: 10.11868/j.issn.1001-4381.2014.07.009, PP. 44-49

Keywords: 镁合金,织构,再结晶,Gd

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究了变形Mg-1.5Zn-0.2Gd合金在热轧和退火过程中的显微组织、织构以及室温成形性能。结果表明Mg-1.5Zn-0.2Gd合金经过热轧、退火后,其织构得到明显弱化并且沿着TD方向发生分裂,使得合金在室温下具有较高的断后伸长率和成形能力。450℃热轧后合金的基面织构强度最大值为3.4,RD方向上伸长率仅为6.7%;然而,合金经过350℃/60min退火后基面织构强度明显降低,最大值仅为2.3,并且基面织构沿着TD方向发生分裂,RD方向上伸长率达到26.7%。EBSD研究表明,稀土Gd元素溶入合金中,阻碍了热轧过程中动态再结晶的发生,在随后的退火过程中,非基面取向晶粒在原始大角度晶界位置形核长大,这是Mg-1.5Zn-0.2Gd合金织构得到优化的关键原因。

References

[1]  ELIEZER D, AGHION E, FROES F H. Magnesium science technology and applications[J]. Advanced Performance Materials, 1998, 5(3): 210-212.
[2]  OBARA T, YOSHINGA H, MOROZUMI S. {112}〈1123〉slip system in magnesium[J]. Acta Metallurgica, 1973, 21(7):845-853.
[3]  STOHR J F, POIRIERJ P. Electron-microscope study of pyramidal slip{1122}〈1123〉in Mg[J].Philos Mag, 1972, 25:1313-1329.
[4]  WALDE T, RIEDEL H. Modeling texture evolution during hot rolling of magnesium alloy AZ31[J]. Materials Science and Engineering:A, 2007,443(1-2),:277-284.
[5]  STYCZYNSKI A, HARTIG C, BOHLEN J, et al. Cold rolling textures in AZ31 wrought magnesium alloy[J].Scr Mater, 2004, 50:943-947.
[6]  MACKENZIE L W F, PEKGULERYUZ M O. The recrystallization and texture of magnesium-zinc-cerium alloys[J]. Scripta Materialia, 2008, 59(6):665-668.
[7]  HANTZSCHE K, BOHLEN J, WENDT J, et al. Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets[J]. Scripta Materialia, 2010, 63(7):725-730.
[8]  CHINO Y, KADO M, MABUCHI M. Compressive deformation behavior at room temperature-773K in Mg-0.2 mass%(0.035 at.%) Ce alloy[J]. Materials Science and Engineering:A, 2008, 494(1-2):343-349.
[9]  STANFORD N, ATWELL D, BARRNETT M R. The effect of Gd on the recrystallisation, texture and deformation behaviour of magnesium-based alloys[J]. Acta Materialia, 2010, 58(20):6773-6783.
[10]  YAN H, CHEN R S, HAN E H. Room-temperature ductility and anisotropy of two rolled Mg-Zn-Gd alloys[J]. Materials Science and Engineering:A, 2010, 527:3317-3322.
[11]  JEONG H T, HA T K. Texture development in a warm rolled AZ31 magnesium alloy[J]. Journal of Materials Processing Technology, 2007, 187-188:559-561.
[12]  WU D, CHEN R S, HAN E H. Excellent room-temperature ductility and formability of rolled Mg-Zn-Gd alloy sheets[J]. Journal of Alloys and Compounds, 2011, 509(6):2856-2863.
[13]  WU D, CHEN R S, TANG W N, et al. Influence of texture and grain size on the room-temperature ductility and tensile behavior in a Mg-Zn-Gd alloy processed by rolling and forging[J]. Material and Design, 2012, 41:306-313.
[14]  黄蓓蓓,蔡庆伍,魏松波,等.AZ31镁合金热压缩变形行为研究[J].材料热处理,2007,36(24): 20-24. HUANG Bei-bei, CAI Qing-wu, WEI Song-bo, et al. Analysis on hot compression deformation of AZ31 magnesium alloy[J]. Transactions of Materials and Heat Treatment, 2007,36(24):20-24.
[15]  HANG X S, SUZUKI K, CHINO Y. Static recrystallisation and mechanical properties of Mg-4Y-3RE magnesium alloy sheet processed by differential speed rolling at 823K[J]. Materials Science and Engineering:A, 2012, 538:281-287.
[16]  CHINO Y, MABUCHI M. Enhanced stretch formability of Mg-Al-Zn alloy sheets rolled at high temperature (723K)[J]. Scr Mater, 2009, 60(6):447-450.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133