BANSAL P, PADTURE N P, VASILIEV A. Improved interfacial mechanical properties of Al2O3-13wt.%TiO2 plasma-sprayed coatings derived from nanocrystalline powders[J]. Acta Materialia,2003,51(10):2959-2970.
[2]
ZHOU H, LI F, HE B, et al. Nanostructured yttria stabilized zirconia coatings deposited by air plasma spraying[J]. Transactions of Nonferrous Metals Society of China,2007,17(2):389-393.
[3]
LIMA R S, MARPLE B R. Toward highly sintering-resistant nanostructured ZrO2-7wt.%Y2O3 coatings for TBC applications by employing differential sintering[J]. Journal of Thermal Spray Technology,2008,17(5-6):846-852.
[4]
WANG N, ZHOU C G , GONG S K, et al. Heat treatment of nanostructured thermal barrier coating[J]. Ceramics International,2007,33(6):1075-1081.
[5]
JAMALI H, MOZAFARINIA R, RAZAVI R S, et al. Fabrication and evaluation of plasma-sprayed nanostructured and conventional YSZ thermal barrier coatings[J]. Current Nanoscience,2012,8(3):402-409.
[6]
GIROLAMO G D, MARRA F, BLASI C, et al. Microstructure, mechanical properties and thermal shock resistance of plasma sprayed nanostructured zirconia coatings[J]. Ceramics International,2011,37(7):2711-2717.
[7]
WANG L, WANG Y, SUN X G, et al. Microstructure and indentation mechanical properties of plasma sprayed nano-bimodal and conventional ZrO2-8wt%Y2O3 thermal barrier coatings[J]. Vacuum,2012,86(8):1174-1185.
[8]
WU Z L, NI L Y, YU Q H, et al. Effect of thermal exposure on mechanical properties of a plasma-sprayed nanostructured thermal barrier coating[J]. Journal of Thermal Spray Technology,2012,21(1):169-175.
[9]
ZHOU C G, WANG N, WANG Z B, et al. Thermal cycling life and thermal diffusivity of a plasma-sprayed nanostructured thermal barrier coating[J]. Scripta Materialia,2004,51(10):945-948.
[10]
KEYVANI A, SAREMI M, SOHI H M. An investigation on oxidation, hot corrosion and mechanical properties of plasma-sprayed conventional and nanostructured YSZ coatings[J]. Surface and Coatings Technology,2011,206(2-3):208-216.
[11]
JAMALI H, MOZAFARINIA R, RAZAVI R S, et al. Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings[J]. Ceramics International,2012,38(8):6705-6712.
[12]
SUN J, ZHANG L, ZHAO D. Microstructure and thermal cycling behavior of nanostructured yttria partially stabilized zirconia (YSZ) thermal barrier coatings[J]. Journal of Rare Earths,2010,28(Suppl 1):198-201.
[13]
KEYVANI A, SAREMI M, SOHI H M, et al. A comparison on thermomechanical properties of plasma-sprayed conventional and nanostructured YSZ TBC coatings in thermal cycling[J]. Journal of Alloys and Compounds,2012,541:488-494.
[14]
YU Q H, RAUF A, WANG N, et al. Thermal properties of plasma-sprayed thermal barrier coating with bimodal structure[J]. Ceramics International,2011,37(3):1093-1099.
[15]
LIANG B, DING C X. Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying[J]. Surface and Coatings Technology,2005,197(2-3):185-192.
[16]
ZHOU C G, WANG N, XU H B. Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings[J]. Materials Science and Engineering: A,2007,452-453:569-574.
[17]
ABBAS M, GUOH B, SHAHID M R. Comparative study on effect of oxide thickness on stress distribution of traditional and nanostructured zirconia coating systems[J]. Ceramics International,2013,39(1):475-481.
[18]
WANG X Y, ZHU Y P, DU L Z, et al. The study on porosity and thermophysical properties of nanostructured La2Zr2O7 coatings[J]. Applied Surface Science,2011,257(21):8945-8949.
[19]
GONG W B, SHA C K, SUN D Q, et al. Microstructures and thermal insulation capability of plasma-sprayed nanostructured ceria stabilized zirconia coatings[J]. Surface and Coatings Technology,2006,201(6):3109-3115.
[20]
YU Q H, RAUF A, ZHOU C G. Microstructure and thermal properties of nanostructured 4wt.%Al2O3-YSZ coatings produced by atmospheric plasma spraying[J]. Journal of Thermal Spray Technology,2010,19(6):1294-1300.
[21]
YU Q H, ZHOU C G, ZHANG H Y, et al. Thermal stability of nanostructured 13wt%Al2O3-8 wt% Y2O3-ZrO2 thermal barrier coatings[J]. Journal of the European Ceramic Society,2010,30(4):889-897.
[22]
CHEN H, HAO Y F, WANG H Y, et al. Analysis of the microstructure and thermal shock resistance of laser glazed nanostructured zirconia TBCs[J].Journal of Thermal Spray Technology,2010,19(3):558-565.
[23]
CHEN D Y, JORDAN E H, GELL M. Effect of solution concentration on splat formation and coating microstructure using the solution precursor plasma spray process[J]. Surface and Coatings Technology,2008,202(10):2132-2138.
[24]
MA X Q, ROTH J, XIAO T D, et al. Solution precursor plasma spray: a promising new technique for forming functional nanostructured films and coatings[J].Ceramic Engineering and Science Proceedings,2008,25(4):381-387.
[25]
JORDAN E H, XIE L D, GELL M, et al. Superior thermal barrier coatings using solution precursor plasma spray[J]. Journal of Thermal Spray Technology,2004,13(1):57-65.
[26]
XIE L D, MA X Q, JORDAN E H, et al. Deposition mechanisms of thermal barrier coatings in the solution precursor plasma spray process[J]. Surface and Coatings Technology,2004,177-178:103-107.
[27]
XIE L D, MA X Q, JORDAN E H, et al. Identification of coating deposition mechanisms in the solution-precursor plasma-spray process using model spray experiments[J]. Materials Science and Engineering:A,2003,362(1-2):204-212.
[28]
BHATIA T, OZTURK A, XIE L D, et al. Mechanisms of ceramic coating deposition in solution-precursor plasma spray[J]. Journal of Materials Research,2002,17(9):2363-2372.
[29]
XIE L D, MA X Q, ALPER O, et al. Processing parameter effects on solution precursor plasma spray process spray patterns[J]. Surface and Coatings Technology,2004,183(1):51-61.
[30]
XU Z H, HE L M, MU R, et al. Influence of the deposition energy on the composition and thermal cycling behavior of La2-(Zr0.7-Ce0.3)2O7 coatings[J]. Journal of the European Ceramic Society,2009,29(9):1771-1779.
[31]
EVANS A G, MUMM D R, HUTCHINSON J W, et al. Mechanisms controlling the durability of thermal barrier coatings[J]. Progress in Materials Science,2001,46(5):505-553.
[32]
SCHULZ U, LEYENS C, FRITSCHER K, et al. Some recent trends in research and technology of advanced thermal barrier coatings[J]. Aerospace Science and Technology,2003,7(1):73-80.
[33]
MUMM D R, EVANS A G, SPITSBERG I T. Characterization of a cyclic displacement instability for a thermally grown oxide in a thermal barrier system[J]. Acta Materialia,2001,49(12):2329-2340.
[34]
WRIGHT P K. Influence of cyclic strain on life of a PVD TBC[J]. Materials Science and Engineering:A,1998,245(2):191-200.
[35]
曹学强.热障涂层材料[M].北京:科学出版社,2007.23-25,231-245.CAO X Q.Thermal Barrier Coating Materials[M].Beijing:Science Press,2007.23-25,231-245.
[36]
FENECH J, DALBIN M, BARNABE A, et al. Sol-gel processing and characterization of (RE-Y)-zirconia powders for thermal barrier coatings[J]. Powder Technology,2011,208(2):480-487.
[37]
CAO X, VASSEN R, FISCHER W, et al. Lanthanum-cerium oxide as a thermal barrier-coating material for high-temperature applications[J]. Advanced Materials,2003,15(17):1438-1442.
[38]
FAN Q B, ZHANG F, W F C, et al. Molecular dynamics calculation of thermal expansion coefficient of a series of rare-earth zirconates[J]. Computational Materials Science,2009,46(3):716-719.
[39]
LI Z P, GAO F. Bonding and hardness of LnMgAl11O19(Ln=La; Pr; Nd; Sm; Eu; Gd)[J]. Journal of Alloys and Compounds,2010,508(2):625-628.
[40]
黄亮亮,孟惠民.磁铅石结构六铝酸盐热障涂层的研究现状[J].材料工程,2013,(12):92-98. HUANG L L,MENG H M.Research status of hexaaluminate thermal barrier coatings with magnetoplumbite structure[J].Journal of Materials Engineering,2013,(12):92-98.
[41]
WANG Y H, OUYANG J H, LIU Z G. Influence of dysprosium oxide doping on thermophysical properties of LaMgAl11O19 ceramics[J]. Materials & Design,2010,31(7):3353-3357.
[42]
WANG Y H, OUYANG J H, LIU Z G. Preparation and thermo-physical properties of La1-xNdxMgAl11O19 (x=0, 0.1, 0.2) ceramics[J]. Journal of Alloys and Compounds,2009,485(1-2):734-738.
[43]
GADOW R, LISCHKA M. Lanthanum hexaaluminate-novel thermal barrier coatings for gas turbine applications-materials and process development[J]. Surface and Coatings Technology,2002,151-152:392-399.
[44]
ZHANG J F, ZHONG X H, CHENG Y L, et al. Thermal-shock resistance of LnMgAl11O19 (Ln=La, Nd, Sm, Gd) with magnetoplumbite structure[J]. Journal of Alloys and Compounds,2009,482(1-2):376-381.
[45]
XIE X Y, GUO H B, GONG S K. Mechanical properties of LaTi2Al9O19 and thermal cycling behaviors of plasma-sprayed LaTi2Al9O19/YSZ thermal barrier coatings[J]. Journal of Thermal Spray Technology,2010,19(6):1179-1185.
[46]
何箐,屈轶,汪瑞军,等.DZ40M合金表面纳米和垂直裂纹结构热障涂层的抗燃气腐蚀性能[J].材料工程,2014,(5):66-72. HE Q,QU Y,WANG R J,et al.Gas hot-corrosion resistance of nanostructure and segmentation thermal barrier coatings on DZ40M superalloy[J].Journal of Materials Engineering,2014,(5):66-72.
[47]
WANG N, ZHAO W X, WANG P W, et al. To develop nanostructured thermal barrier coatings[J]. Journal of Modern Physics B,2006,20(25-27):4171-4176.
[48]
LIMA R S, MARPLE B R. Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review[J]. Journal of Thermal Spray Technology,2007,16(1):40-63.
[49]
LIN X H, ZENG Y, ZHOU X M, et al. Microstructure of alumina-3wt.% titania coatings by plasma spraying with nanostructured powders[J]. Materials Science and Engineering:A,2003,357(1-2): 228-234.
[50]
GELL M, JORDAN E H, SOHN Y H, et al. Development and implementation of plasma sprayed nanostructured ceramic coatings[J]. Surface and Coatings Technology,2001,146-147:48-54.
[51]
LIMA R S, KUCUK A, BERNDT C C. Bimodal distribution of mechanical properties on plasma sprayed nanostructured partially stabilized zirconia[J]. Materials Science and Engineering:A,2002,327(2):224-232.
[52]
GOBERMAN D, SOHN Y H, SHAW L, et al, Microstructure development of Al2O3-13wt.%TiO2 plasma sprayed coatings derived from nanocrystalline powders[J]. Acta Materialia,2002,50(5):1141-1152.
[53]
LUO H, GOBERMAN D, SHAW L, et al. Indentation fracture behavior of plasma-sprayed nanostructured Al2O3-13wt.% TiO2 coatings[J]. Materials Science and Engineering:A,2003,346(1-2):237-245.
[54]
GELL M, XIE L D, MA X Q, et al. Highly durable thermal barrier coatings made by the solution precursor plasma spray process[J]. Surface and Coatings Technology,2004,177-178:97-102.
[55]
XIE L D, JORDAN E H, PADTURE N P, et al. Phase and microstructural stability of solution precursor plasma sprayed thermal barrier coatings[J]. Materials Science and Engineering:A,2004,381(1-2):189-196.
[56]
CHEN D Y, GELL M, JORDAN E H, et al. Thermal stability of air plasma spray and solution precursor plasma spray thermal barrier coatings[J]. Journal of the American Ceramic Society,2007,90(10):3160-3166.
[57]
PADTURE N P, SCHLICHTING K W, BHATIA T, et al. Towards durable thermal barrier coatings with novel microstructures deposited by solution-precursor plasma spray[J].Acta Materialia,2001,49(12):2251-2257.
[58]
JADHAV A, PADTURE N P, WU F, et al. Thick ceramic thermal barrier coatings with high durability deposited using solution-precursor plasma spray[J]. Materials Science and Engineering:A,2005,405(1-2):313-320.
[59]
XIE L D, CHEN D Y, JORDAN E H, et al. Formation of vertical cracks in solution-precursor plasma-sprayed thermal barrier coatings[J]. Surface and Coatings Technology,2006,201(3-4):1058-1064.
[60]
GELL M, XIE L D, JORDAN E H, et al. Mechanisms of spallation of solution precursor plasma spray thermal barrier coatings[J]. Surface and Coatings Technology,2004,188-189:101-106.
[61]
WU F, JORDAN E H, MA X, et al. Thermally grown oxide growth behavior and spallation lives of solution precursor plasma spray thermal barrier coatings[J]. Surface and Coatings Technology,2008,202(9):1628-1635.
[62]
PAWLOWSKI L. Finely grained nanometric and submicrometric coatings by thermal spraying: a review[J]. Surface and Coatings Technology,2008,202(18):4318-4328.
[63]
KOZERSKI S,ATKA L, PAWLOWSKI L, et al. Preliminary study on suspension plasma sprayed ZrO2 + 8wt.% Y2O3 coatings[J]. Journal of the European Ceramic Society,2011,31(12):2089-2098.
[64]
PAWLOWSKI L. Suspension and solution thermal spray coatings[J]. Surface and Coatings Technology,2009,203(19):2807-2829.
[65]
BASU S, JORDAN E H, CETEGEN B M. Fluid mechanics and heat transfer of liquid precursor droplets injected into high-temperature plasmas[J]. Journal of Thermal Spray Technology,2008,17(1):60-72.
[66]
MA X Q, WU F, ROTH J, et al. Low thermal conductivity thermal barrier coating deposited by the solution plasma spray process[J]. Surface and Coatings Technology,2006,201(7): 4447-4452.
[67]
CARPIO P, RAYN E, PAWOWSKI L, et al. Microstructure and indentation mechanical properties of YSZ nanostructured coatings obtained by suspension plasma spraying[J]. Surface and Coatings Technology,2013,220:237-243.
[68]
WALDBILLIG D, KESLER O. Effect of suspension plasma spraying process parameters on YSZ coating microstructure and permeability[J]. Surface and Coatings Technology,2011,205(23-24):5483-5492.
[69]
TINGAUD O, BERTRAND P, BERTRAND G. Microstructure and tribological behavior of suspension plasma sprayed Al2O3 and Al2O3-YSZ composite coatings[J]. Surface and Coatings Technology,2010,205(4):1004-1008.
[70]
VANEVERY K, KRANE M J, TRICE R W. Parametric study of suspension plasma spray processing parameters on coating microstructures manufactured from nanoscale yttria-stabilized zirconia[J]. Surface and Coatings Technology,2012,206(8-9): 2464-2473.
[71]
VAβEN R, KAβNER H, MAUER G, et al. Suspension plasma spraying: process characteristics and applications[J]. Journal of Thermal Spray Technology,2010,19(1-2):219-225.
[72]
STUKE A, KASSNER H, MARQUS J L, et al. Suspension and air plasma-sprayed ceramic thermal barrier coatings with high infrared reflectance[J]. International Journal of Applied Ceramic Technology,2012,9(3):561-574.
[73]
GUIGNARD A, MAUER G, VAβEN R, et al. Deposition and characteristics of submicrometer-structured thermal barrier coatings by suspension plasma spraying[J]. Journal of Thermal Spray Technology,2012,21(3-4):416-424.
[74]
TARASI F, MEDRAJ M, DOLATABADI A, et al. Phase formation and transformation in alumina/YSZ nanocomposite coating deposited by suspension plasma spray process[J]. Journal of Thermal Spray Technology,2010,19(4):787-795.
[75]
TARASI F, MEDRAJ M, DOLATABADI A et al. Enhancement of amorphous phase formation in alumina-YSZ coatings deposited by suspension plasma spray process[J]. Surface and Coatings Technology,2013,220:191-198.
[76]
TARASI F, MEDRAJ M, DOLATABADI A, et al. Amorphous and crystalline phase formation during suspension plasma spraying of the alumina-zirconia composite[J]. Journal of the European Ceramic Society,2011,31(5):2903-2913.
[77]
CHEN D Y, JORDAN E H, GELL M. Suspension plasma sprayed composite coating using amorphous powder feedstock[J]. Applied Surface Science,2009,255(11):5935-5938.
[78]
BERGHAUS J O, MARPLE B R. High velocity oxy-fuel (HVOF) suspension spraying of mullite[J]. Journal of Thermal Spray Technology,2008,17(5-6):671-678.
[79]
GADOW R, KILLINGER A, RAUCH J. New results in high velocity suspension flame spraying (HVSFS)[J]. Surface and Coatings Technology,2008,202(18):4329-4336.
[80]
RAUF A, YU Q, JIN L, et al. Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying[J]. Scripta Materialia,2012,66(2):109-112.
[81]
RAHELEH A P, REZA S R, REZA M, et al. Improving the thermal shock resistance of plasma sprayed CYSZ thermal barrier coatings by laser surface modification[J]. Optics and Lasers in Engineering,2012,50(5):780-786.
[82]
JIN L, NI L Y, YU Q H, et al. Thermal cyclic life and failure mechanism of nanostructured 13wt%Al2O3 doped YSZ coating prepared by atmospheric plasma spraying[J]. Ceramics International,2012,38(4):2983-2989.
[83]
PAN Z Y, WANG Y, WANG C H, et al. The effect of SiC particles on thermal shock behavior of Al2O3/8YSZ coatings fabricated by atmospheric plasma spraying[J]. Surface and Coatings Technology,2012,206(8-9):2484-2498.
[84]
ZHAO X D, ZENG K L, XIE J G, et al. Nanostructured lanthanum zirconate coating and its thermal stability properties[J]. Journal of Iron and Steel Research International,2007,14(5):147-151.
[85]
LI J Y, DAI H, LI Q, et al. Lanthanum zirconate nanofibers with high sintering-resistance[J]. Materials Science and Engineering B,2006,133(1-3):209-212.
[86]
XIE X Y, GUO H B, GONG S K, et al. Lanthanum-titanium-aluminum oxide: A novel thermal barrier coating material for applications at 1300℃[J].Journal of the European Ceramic Society,2011,31(9):1677-1683.
[87]
XIE X Y, GUO H B, GONG S K, et al. Hot corrosion behavior of double-ceramic-layer LaTi2Al9O19/YSZ thermal barrier coatings[J]. Chinese Journal of Aeronautics,2012,25(1):137-142.
[88]
XIE X Y, GUO H B, GONG S K, et al. Thermal cycling behavior and failure mechanism of LaTi2Al9O19/YSZ thermal barrier coatings exposed to gas flame[J]. Surface and Coatings Technology,2011,205(17-18):4291-4298.
[89]
XU Z H, HE L M, MU R D, et al. Double-ceramic-layer thermal barrier coatings based on La2(Zr0.7Ce0.3)2O7/La2Ce2O7 deposited by electron beam-physical vapor deposition[J]. Applied Surface Science,2010,256(11):3661-3668.
[90]
WANG L, WANG Y, SUN X G, et al. Thermal shock behavior of 8YSZ and double-ceramic-layer La2Zr2O7/8YSZ thermal barrier coatings fabricated by atmospheric plasma spraying[J]. Ceramics International,2012,38(5):3595-3606.
[91]
XU Z H, HE L M, MU R, et al. Thermal cycling behavior of YSZ and La2(Zr0.7Ce0.3)2O7 as double-ceramic-layer systems EB-PVD TBCs[J]. Journal of Alloys and Compounds,2012,525:87-96.
[92]
XU Z H, HE LM, MU R, et al. Double-ceramic-layer thermal barrier coatings of La2Zr2O7/YSZ deposited by electron beam-physical vapor deposition[J]. Journal of Alloys and Compounds,2009,473(1-2):509-515.
[93]
XU Z H, HE S M, HE L M, et al. Novel thermal barrier coatings based on La2(Zr0.7Ce0.3)2O7/8YSZ double-ceramic-layer systems deposited by electron beam physical vapor deposition[J]. Journal of Alloys and Compounds,2011,509(11):4273-4283.
[94]
CAO X Q, VASSEN R, TIETZ F, et al. New double-ceramic-layer thermal barrier coatings based on zirconia-rare earth composite oxides[J]. Journal of the European Ceramic Society,2006,26(3):247-251.
[95]
MA W, DONG H G, GUO H B, et al. Thermal cycling behavior of La2Ce2O7/8YSZ double-ceramic-layer thermal barrier coatings prepared by atmospheric plasma spraying[J]. Surface and Coatings Technology,2010,204(21-22):3366-3370.
[96]
KUSANO E, KITAGAWA M, SATOH A, et al. Hardness of compositionally nano-modulated TiN films[J]. Nanostructured Materials,1999,12(5-8):807-810.
[97]
HERNANDEZ-LOPEZ J L, BAUER R E, CHANG W S, et al. Functional polymers as nanoscopic building blocks[J]. Materials Science and Engineering:C,2003,23(1-2):267-274.
[98]
LIMA R S, KUCUK A, BERNDT C C. Integrity of nanostructured partially stabilized zirconia after plasma spray processing[J]. Materials Science and Engineering:A,2001,313(1-2):75-82.
[99]
KILLINGER A, GADOW R, MAUER G, et al. Review of new developments in suspension and solution precursor thermal spray processes[J]. Journal of Thermal Spray Technology,2011,20(4):677-695.
[100]
BIANCHI L, MEILLOT E. Summary of the round table on the present and future of solution and suspension thermal spraying applications[J]. Journal of Thermal Spray Technology,2012,21(6):1100-1103.
[101]
FAUCHAIS P, MONTAVON G. Latest developments in suspension and liquid precursor thermal spraying[J]. Journal of Thermal Spray Technology,2010,19(1-2):226-239.
[102]
FAUCHAIS P, RAT V, COUDERT J F, et al. Operating parameters for suspension and solution plasma-spray coatings[J]. Surface and Coatings Technology,2008,202(18):4309-4317.
[103]
JIANG X L,LIU C B,LIN F. Overview on the development of nanostructured thermal barrier coatings[J]. Journal of Materials Science & Technology,2007,23(4):449-456.
[104]
LIANG B, DING C X. Phase composition of nanostructured zirconia coatings deposited by air plasma spraying[J]. Surface and Coatings Technology,2005,191(2-3):267-273.