全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2015 

一维纳米氧化锌的制备及应用研究进展

DOI: 10.11868/j.issn.1001-4381.2015.02.017, PP. 103-112

Keywords: 一维纳米氧化锌,气相法,液相法,模板法

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文对一维纳米氧化锌的制备方法进行了综述,包括气相法、液相法和模板法;重点讨论了一维纳米氧化锌在太阳能电池、传感器、多功能纺织品以及有机物光催化降解等方面的应用;指出了一维纳米氧化锌制备中存在的问题,并对其后续发展进行了展望.

References

[1]  JACOBS C B, PEAIRS M J, VENTON B J. Review: carbon nanotube based electrochemical sensors for biomolecules[J]. Analytica Chimica Acta, 2010, 662(2): 105-127.
[2]  YANG X F, TANG H, CAO K S, et al. Templated-assisted one-dimensional silica nanotubes: synthesis and applications[J]. Journal of Materials Chemistry, 2011, 21(17): 6122-6135.
[3]  XIAO F X. Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application[J]. ACS Applied Materials & Interfaces, 2012, 4(12): 7055-7063.
[4]  YANG P H, WANG K, LIANG Z W, et al. Enhanced wettability performance of ultrathin ZnO nanotubes by coupling morphology and size effects[J]. Nanoscale, 2012, 4(18): 5755-5760.
[5]  LI Z, GAO F, KANG W J, et al. Layer-by-layer growth of ultralong ZnO vertical wire arrays for enhanced photoelecreocatalytic activity[J]. Materials Letters, 2013, 97: 52-55.
[6]  ZHAO Y G, YAN X Q, KANG Z, et al. Highly sensitive uric acid biosensor based on individual zinc oxide micro/nanowires[J]. Microchimica Acta, 2013, 180(9-10): 759-766.
[7]  LU S N, QI J J, WANG Z Z, et al. Size effect in a cantilevered ZnO micro/nanowire and its potential as a performance tunable force sensor[J]. RSC Advances, 2013, 3(42): 19375-19379.
[8]  PRADEL K C, WU W Z, ZHOU Y S, et al. Piezotronic effect in solution-grown p-type ZnO nanowires and films[J]. Nano Letter, 2013, 13(6): 2647-2653.
[9]  VALLS I G, CANTU M L. Dye sensitized solar cells based on vertically-aligned ZnO nanorods: effect of UV light on power conversion efficiency and lifetime[J]. Energy & Environmental Science, 2010, 3(6): 789-795.
[10]  YI J, LEE J M, PARK W II. Vertically aligned ZnO nanorods and grapheme hybrid architectures for high-sensitive flexible das sensors[J]. Sensors and Actuators B: Chemical, 2011, 155(1): 264-269.
[11]  CHENG C W, SIE E J, LIU B, et al. Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles[J]. Applied Physics Letter, 2010, 96(7): 071107.
[12]  YANG Y, QI J J, GUO W, et al. Transverse piezoelectric field-effect transistor based on single ZnO nanobelts[J]. Physical Chemistry Chemical Physics, 2010, 12(39): 12415-12419.
[13]  XING G Z, FANG X S, ZHANG Z, et al. Ultrathin single-crystal ZnO nanobelts: Ag-catalyzed growth and field emission property[J]. Nanotechnology, 2010, 21(25): 255701.
[14]  ASTHANA A, ARDAKANI H A, YAP Y K, et al. Real time observation of mechanically triggered piezoelectric current in individual ZnO nanobelts[J]. Journal of Materials Chemistry C, 2014, 2(20): 3995-4004.
[15]  MONMENI K, ODEGARD G M, YASSAR R S. Finite size effect on the piezoelectric properties of nanobelts: A molecular dynamics approach[J]. Acta Materialia, 2012, 60(13-14): 5117-5124.
[16]  YU M, LONG Y Z, SUN B, et al. Recent advances in solar cells based on one-dimensional nanostructure arrays[J]. Nanoscale, 2012, 4(9): 2783-2796.
[17]  SUN T J, QIU J S, LIANG C H. Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays[J]. The Journal of Physical Chemistry C, 2008, 112(3): 715-721.
[18]  HE J H, HO C H, WANG C W, et al. Growth of crossed ZnO nanorod networks induced by polar substrate surface[J]. Crystal Growth and Design, 2009, 9(1): 17-19.
[19]  ZHAO C X, HUANG K, DENG S Z, et al. Investigation of the effects of atomic oxygen exposure on the electrical and field emission properties of ZnO nanowires[J]. Applied Surface Science, 2013, 270: 82-89.
[20]  WAHAB R, ANSARI S G, KIM Y S, et al. Low temperature solution synthesis and characterization of ZnO nano-flowers[J]. Materials Research Bulletin, 2007, 42(9): 1640-1648.
[21]  CHENG B, SAMULSKI E T. Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios[J]. Chemical Communications, 2004,(8): 986-987.
[22]  NGUYEN C P T, LA P P H, TRINH T T, et al. Fabrication of ZnO nanorods for gas sensing applications using hydrothermal method[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(8): 6261-6265.
[23]  LIU T Y, LIAO H C, LIN C C, et al. Biofunctional ZnO nanorod arrays grown on flexible substrates[J]. Langmuir, 2006, 22(13): 5804-5809.
[24]  LI Q C, KUMAR V, LI Y, et al. Fabrication of ZnO nanorods and nanotubes in aqueous solutions[J]. Chemistry of Materials, 2005, 17(5): 1001-1006.
[25]  贺永宁, 张雯, 崔吾元,等. ZnO纳米线阵列膜的自组装生长及其金属接触特性[J]. 硅酸盐学报, 2010, 38(1): 17-20. HE Y N, ZHANG W, CUI W Y, et al. Seif-assembly growth of aligned zinc oxide nanowire arrays and its metal-contact properties[J]. Journal of the Chinese Ceramic Society, 2010, 38(1): 17-20.
[26]  KONG X Y, DING Y, YANG R S, et al. Single-crystal nanorings formed by epitaxial self-coiling of polar-nanobelts[J]. Science, 2004, 303(5662): 1348-1351.
[27]  HASSAN N K, HASHIM M R, BOUOUDINA M. One-dimensional ZnO nanostructure growth prepared by thermal evaporation on different substrates: ultraviolet emission as a function of size and dimensionality[J]. Ceramics International, 2013, 39(7): 7439-7444.
[28]  PARK W I, KIM D H, JUNG S W, et al. Metalorganic vaporphase epitaxial growth of vertically well alligned ZnO nanorods[J]. Applied Physics Letters, 2002, 80(22): 4232-4234.
[29]  SUN Y, FUGE G M, ASHFOLD M. Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods[J]. Chemical Physics Letters, 2004, 396(1): 21-26.
[30]  WANG Z L. ZnO nanowire and nanobelt platform for nanotechnology[J]. Materials Science and Engineering Reports, 2009, 64(3): 33-71.
[31]  MA J Z, LIU J L, BAO Y. Morphology-photocatalytic properties-growth mechanism for ZnO nanostructures[J]. Crystal Research and Technology, 2013, 48(4): 251-260.
[32]  JIANG X P, LIU Y Z, GAO Y Y, et al. Preparation of one-dimensional nanostructured ZnO[J]. Particuology, 2010, 8(4): 383-385.
[33]  张雯, 张庆腾, 贺永宁. ZnO纳米线膜的可控生长及其量子限域效应研究[J]. 西安交通大学学报, 2010, 44(4): 82-86. ZHANG W, ZHANG Q T, HE Y N. Study on controllable growth and quantum confined effect of ZnO nanowire membranes[J]. Journal of Xi’an Jiaotong University, 2010, 44(4): 82-86.
[34]  SIMIMOL A, CHOWDHURY P, GHOSH S K, et al. Optimization of parameters for the growth of defect free ZnO nanorod arrays with intense UV emission capacity by electrochemcial route[J]. Electrochimica Acta, 2013, 90: 514-523.
[35]  WANG X D, SUMMER C J, WANG Z L. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays[J]. Nano Letter, 2004, 4(3): 423-426.
[36]  GARRY S, MCCARTHY E, MOSNIER J P, et al. Control of ZnO nanowire arrays by nanosphere lithography (NSL) on laser-produced ZnO substrates[J]. Applied Surface Science, 2011, 257(12): 5159-5162.
[37]  QIN Y, YANG R S, WANG Z L. Growth of horizonatal ZnO nanowire arrays on any substrate[J]. The Journal of Physical Chemistry C, 2008, 112(48): 18734-18736.
[38]  HU X L, MASUDA Y, OHJI T, et al. Micropatterning of ZnO nanoarrays by forced hydrolysis of anhydrous zinc acetate[J]. Langmuir, 2008, 24(14): 7614-7617.
[39]  阮秀, 董磊, 于晶, 等. 软模板法合成纳米材料的研究进展[J]. 材料导报, 2012, 26(1): 56-60. RUAN X, DONG L, YU J, et al. The progress of nanomaterials prepared in the presence of soft template[J]. Materials Review, 2012, 26(1): 56-60.
[40]  RAULA M, RASHID M H, PAIRA T K, et al. Ascorbate-assisted growth of hierarchical ZnO nanostructures: sphere, spindle, and flower and their catalytic properties[J]. Langmuir, 2010, 26(11): 8769-8782.
[41]  ZENG H B, XU X, GAUTAM U K, et al. Template deformation-tailored ZnO nanorod/nanowire arrays: full growth control and optimization of field-emission[J]. Advanced Functional Materials, 2009, 19(19): 3165-3172.
[42]  ZHANG D B, WANG S J, CHENG K, et al. Controllable fabrication of patterned ZnO nanorod arrays: investigations into the impacts on their morphology[J]. ACS Applied Materials & Interfaces, 2012, 4(6): 2969-2977.
[43]  XU S, DING Y, WEI Y, et al. Patterned growth of horizontal ZnO nanowire arrays[J]. Journal of the American Chemical Society, 2009, 131(19): 6670-6671.
[44]  MARTINSON A B, ELAM J W, HUPP J T, et al. ZnO nanotube based dye-sensitized solar cells[J]. Nano Letter, 2007, 7(8): 2183-2187.
[45]  QIU J H, GUO M, WANG X D. Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells[J]. ACS Applied Materials & Interfaces, 2011, 3(7): 2358-2367.
[46]  YANG Y, ZHANG H L, ZHU G, et al. Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies[J]. ACS Nano, 2013, 7(1): 785-790.
[47]  KHUN K, IBUPOTO Z H, CHEY C O, et al. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor[J]. Applied Surface Science, 2013, 268: 37-43.
[48]  YANG Y, PRADEL K C, JING Q S, et al. Thermoelectric nanogenerators based on single Sb-doped ZnO micro/nanobelts[J]. ACS Nano, 2012, 6(8): 6984-6989.
[49]  ZHOU J, FEI P, GAO Y F, et al. Mechanical-electrical triggers and sensors using piezoelectric micowires/nanowires[J]. Nano Letter, 2008, 8(9): 2725-2730.
[50]  PAN C F, YU R M, NIU S, et al. Piezotronic effect on the sensitivity and signal level of schottky contacted proactive micro/nanowire nanosensors[J]. ACS Nano, 2013, 7(2): 1803-1810.
[51]  MA J Z, LIU J L, BAO Y. Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property[J]. Ceramics International, 2013, 39(3): 2803-2810.
[52]  WANG R H, XIN J H, TAO X M, et al. ZnO nanorods grown on cotton fabrics at low temperature[J]. Chemical Physics Letters, 2004, 398(1): 250-255.
[53]  WANG R H, XIN J H, TAO X M. UV-blocking property of dumbbell-shaped ZnO crystallites on cotton fabrics[J]. Inorganic Chemistry, 2005, 44(11): 3926-3930.
[54]  WANG L L, ZHANG X T, LI B, et al. Superhydrophobic and ultraviolet-blocking cotton textiles[J]. ACS Applied Materials & Interfaces, 2011, 3(4): 1277-1281.
[55]  XU B, CAI Z S. Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification[J]. Applied Surface Science, 2008, 254(18): 5899-5904.
[56]  WANG Y X, LI X Y, LU G, et al. Highly oriented 1-D ZnO nanorod arrays on zinc foil: Direct growth from substrate, optical properties and photocatalytic activities[J]. The Journal of Physical Chemistry C, 2008, 112(19): 7332-7336.
[57]  KUO T J, LIN C N, KUO C L, et al. Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts[J]. Chemistry of Materials, 2007, 19(21): 5143-5147.
[58]  LIU L, FU L, LIU Y, et al. Bioinspired synthesis of vertically aligned ZnO nanorod arrays: toward greener chemistry[J]. Crystal Growth & Design, 2009, 9(11): 4793-4796.
[59]  REN C L, YANG B F, WU M, et al. Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance[J]. Hazardous Materials, 2010, 182(1): 123-129.
[60]  XU S, ADIGA N, BA S, et al. Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments[J]. ACS Nano, 2009, 3(7): 1803-1812.
[61]  HU W H, LIU Y S, ZHU Z H, et al. Randomly oriented ZnO nanorods as advanced substrate for high-performance protein microarrays [J]. ACS Applied Materials & Interfaces, 2010, 2(6): 1569-1572.
[62]  WANG Z L, YANG R, ZHOU J, et al. Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics [J]. Materials Science and Engineering: Reports, 2010, 70(3): 320-329.
[63]  QIN Y, YANG R, WANG Z L. Growth of horizontal ZnO nanowire arrays on any substrate [J]. The Journal of Physical Chemistry C, 2008, 112(48): 734-736.
[64]  PARK Y K, CHOI H S, KIM J H, et al. High performance field-effect transistors fabricated with laterally grown ZnO nanorods in solution[J]. Nanotechnology, 2011, 22(18): 5310-5316.
[65]  BAO Y,ZHANG Y H,MA J Z,et al.Controllable fabrication of one-dimensional ZnO nanoarrays and their application in constructing silver trap structures[J].RSC Advances,2014,63:33198-33205.
[66]  KIM J Y, JO S Y, SUN G J, et al. Tailoring the surface area of ZnO nanorods for improved performance in glucose sensors[J]. Sensors and Actuators B: Chemical, 2014, 192: 216-220.
[67]  LU X F, ZHANG W J, WANG C, et al. One-dimensional conducting polymer nanocomposites: synthesis, properties and applicatons[J]. Progress in Polymer Science, 2010, 36(5): 671-712.
[68]  BARTH S, RAMIREZ F H, HOLMES J D, et al. Synthesis and applications of one-dimensional semiconductors[J]. Progress in Materials Science, 2010, 55(6): 563-627.
[69]  FANG X S, HU L F, YE C H, et al. One-dimensional inorganic semiconductor nanostructures: A new carrier for nanosensors[J]. Pure & Applied Chemistry, 2010, 82(11): 2185-2198.
[70]  LIANG H W, LIU S, YU S H. Controlled synthesis of one-dimensional inorganic nanostructures using pre-existing one-dimensional nanostructures as templates[J]. Advanced Materials, 2010, 22(35): 3925-3937.
[71]  BACA A J, AHN J H, SUN Y G, et al. Semiconductor wires and ribbons for high-performance flexible electronics[J]. Angewandte Chemie International Edition, 2008, 47(30): 5524-5542.
[72]  YANG P H, XIAO X, LI Y Z, et al. Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems[J]. ACS Nano, 2013, 7(3): 2616-2626.
[73]  HUANG M H, MAO S, FEICK H, et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292(5523): 1897-1901.
[74]  LI Z, YANG R, YU M, et al. Cellular level biocompatibility and biosafety of ZnO nanowires[J]. The Journal of Physical Chemistry C, 2008, 112(51): 20114-20117.
[75]  刘大博. MSM 结构 ZnO 紫外探测器的制备及光电性能研究[J]. 航空材料学报, 2012, 32(3): 63-67. LIU D B. Fabrication of ZnO MSM UV detector and its photoelectronic property[J]. Journal of Aeronautical Materials, 2012, 32(3): 63-67.
[76]  PRADHAN D, KUMAR M, ANDO Y, et al. One-dimensional and two-dimensional ZnO nanostructured materials on a plastic substrate and their field emission properties[J]. The Journal of Physical Chemistry C, 2008, 112(18): 7093-7096.
[77]  DENG Z, CHEN M, GU G, et al. A facile method to fabricate ZnO hollow spheres and their photocatalytic property[J]. The Journal of Physical Chemistry B, 2008, 112(1): 16-22.
[78]  WANG X J, ZHANG Q L, WAN Q, et al. Controllable ZnO architectures by ethanolamine-assisted hydrothermal reaction for enhanced photocatalytic activity[J]. The Journal of Physical Chemistry C, 2011, 115(6): 2769-2775.
[79]  YANG Y, GUO W X, ZHANG Y, et al. Piezotronic effect on the output voltage of P3HT/ZnO micro/nanowire heterojunction solar cells[J]. Nano Letter, 2011, 11(11): 4812-4817.
[80]  FAN J D, HAO Y, MUNUERA C, et al. Influence of the annealing atmosphere on the performance of ZnO nanowire dye-sensitized solar cells[J]. The Journal of Physical Chemistry C, 2013, 117(32): 16349-16356.
[81]  QI G C, ZHAO S Z, YUAN Z H. From function-guided assembly of a lotus leaf-like ZnO nanostructure to a formaldehyde das-sensing application[J]. Sensors and Actuators:B, 2013, 184: 143-149.
[82]  XI Y, HU C G, HAN X Y, et al. Hydrothermal synthesis of ZnO nanobelts and gas sensitivity property[J]. Solid State Communications, 2007, 141(9): 506-509.
[83]  MAO Z P, SHI Q P, ZHANG L P, et al. The formation and UV-blocking property of needle-shaped ZnO nanorod on cotton fabric[J]. Thin Solid Films, 2009, 517(8): 2681-2686.
[84]  ZOHDY M H, EI-HOSSAMY M B, EI-NAGGAR A W M, et al. Novel UV-protective formulations for cotton, PET fabrics and their blend utilizing irradiation technique[J]. European Polymer Journal, 2009, 45(10): 2926-2934.
[85]  WU Q Z, CHEN X, ZHANG P, et al. Amino acid-assisted synthesis of ZnO hierarchical architectures and their novel photocatalytic activities[J]. Crystal Growth and Design, 2008, 8(8): 3010-3018.
[86]  BAE J, HAN J B, ZHANG X M, et al. ZnO nanotubes grown at low temperature using Ga as catalysts and their enhanced photocatalytic activities[J]. The Journal of Physical Chemistry C, 2009, 113(24): 10379-10383.
[87]  COUTTS M J, ZAREIE H M, CORTIE M B, et al. Exploiting zinc oxide re-emission to fabricate periodic arrays[J]. ACS Applied Materials & Interfaces, 2010, 2(6): 1774-1779.
[88]  BADRE C, PAUPORTE T. Nanostructured ZnO-based surface with reversible electrochemically adjustable wettability[J]. Advanced Materials, 2009, 21(6): 697-701.
[89]  赵荣祥, 李秀萍. 燃烧法快速合成乳白色棒状纳米氧化锌及其光催化研究[J]. 材料工程, 2013,(11): 42-46. ZHAO R X, LI X P. Rapid synthesis and photocatalytic performance of milky and rod-like nanometer zinc oxide by combustion method[J]. Journal of Materials Engineering, 2013, (11): 42-46.
[90]  YANG Q, LIU Y, PAN C F, et al. Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect[J]. Nano Letter, 2013, 13(2): 607-613.
[91]  ZHANG Y, GE L, LI M, et al. Flexible paper-based ZnO nanorod light-emitting diodes induced multiplexed photoelectrochemical immunoassay[J]. Chemical Communications, 2014, 50(12): 1417-1419.
[92]  HUNG S T, CHANG C J, HSU M H. Improved photocatalytic performance of ZnO nanograss decorated pore-array films by surface texture modification and silver nanoparticle deposition[J]. Journal of hazardous materials, 2011, 198: 307-316.
[93]  施利毅, 马书蕊, 冯欣, 等. 一维氧化锌纳米棒制备技术的最新研究进展[J]. 材料导报, 2006, 20(增刊2): 86-89. SHI L Y, MA S R, FENG X, et al. The newest synthetic routes of one-dimensional ZnO nanorods[J]. Materials Review, 2006, 20(Suppl 2): 86-89.
[94]  PANDA D, TSENG T Y. One-dimensional ZnO nanostructures: fabrication, optoelectronic properties, and device applications[J].Journal of Materials Science, 2013, 48(20): 6849-6877.
[95]  LI Y, CAI W P, DUAN G T, et al. Superhydrophobicity of 2D ZnO ordered pore arrays formed by solution-dipping template method[J]. Journal of Colloid and Interface Science, 2005, 287(2): 634-639.
[96]  WEINTRAUB B, DENG Y L, WANG Z L. Position-controlled seedless growth of ZnO nanorod arrays on a polymer substrate via wet chemical synthesis[J]. J Phys Chem C, 2007, 111(28): 10162-10165.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133