KOIZUMI Y, KOBAYASHI T, YOKOKAWA T, et al. Development of next generation Ni-base single crystal superalloys[A]. GREEN K A, POLLOCK T M, HARADA H. Superalloys 2004[C]. Warrendale, PA:TMS,2004.35-43.
[3]
ZHANG J X, MURAKUMO T, KOIZUMI Y, et al. Interfacial dislocation networks strengthening a fourth-generation single-crystal TMS-138 superalloy[J]. Metall Mater Trans A, 2002, 33(12): 3741-3746.
[4]
YEH A C, SATO A, KOBAYASHI T, et al. On the creep and phase stability of advanced Ni-base single crystal superalloys[J]. Mater Sci Eng A, 2008, 490(1-2): 445-451.
[5]
WANG C, WANG C Y. Density functional theory study of Ni/Ni3Al interface alloying with Re and Ru[J]. Surface Science, 2008, 602(14): 2604-2609.
[6]
赵明汉,张继,冯滌. 高温合金断口分析[M]. 北京: 冶金工业出版社, 2006.
[7]
YOKOKAWA T, OSAWA M, NISHIDA K, et al. Partitioning behavior of platinum group metals on the γ and γ′ phases of Ni-base superalloys at high temperatures[J]. Scripta Mater,2003,49(10): 1041-1046.
[8]
HOBBS R A, ZHANG L, RAE C M F, et al. The effect of ruthenium on the intermediate to high temperature creep response of high refractory content single crystal nickel-base superalloys[J]. Mater Sci Eng A, 2008, 489(1-2): 65-76.
[9]
CARROLL L J, FENG Q, MANSFIELD J F, et al. High refractory, low misfit Ru-containing single crystal superalloys[J]. Metall Mater Trans A, 2006, 37(10): 2927-2938.
[10]
CARROLL L J, FENG Q, MANDSFIELD J F, et al. Elemental partitioning in Ru-containing nickel-base single crystal superalloys[J]. Mater Sci Eng A, 2007, 457(1-2): 292-299.