雷玉成, 任闻杰, 谢伟峰, 等.氧化物弥散强化MGH956合金TIG焊缝气孔问题分析[J].焊接学报, 2011, 32(11): 1-4. LEI Y C, REN W J, XIE W F, et al. Study on pores in TIG welding of oxide dispersion strengthened(ODS) alloy MGH956[J].Transactions of the China Welding Institution,2011,32 (11): 1-4.
[2]
雍岐龙, 孙新军, 郑磊, 等. 钢铁材料中第二相的作用[J].科技创新导报, 2009,(8): 2-3. YONG Q L, SUN X J, ZHENG L, et al. Role of second phases in the steel[J]. Science and Technology Innovation Herald, 2009, (8): 2-3.
[3]
GLUSHKOVA V B, KRZHIZHANOVSKAYA V A, EGOROVA O N, et al. Mechanism of YAG synthesized by the solid-state reaction method[J]. Inorganic Materials, 1983, 19: 80-84.
[4]
姜茂发, 王荣, 李春龙.钢中稀土与铌、钒、钛等微合金元素的相互作用[J].稀土, 2003, 24(5): 1-3. JIANG M F, WANG R, LI C L. Interaction of rare earths and micro alloying elements Nb, V and Ti in steel[J]. Chinese Rare Earths, 2003, 24(5):1-3.
[5]
SEPULVEDA R, ARENAS F. TiC-VC-Co: a study on its sintering and microstructure[J]. International Journal of Refractory Metals & Hard Materials, 2001, 19(4): 389-396.
[6]
OLIERA P, BOUGAULT A, ALAMO A, et al. Effects of the forming processes and Y2O3 content on ODS-Eurofer mechanical properties[J]. Journal of Nuclear Materials, 2009, 386-388: 561-563.
[7]
SHIGEHARU U, MASAYUKI F. Perspective of ODS alloys application in nuclear environments[J]. Journal of Nuclear Materials, 2002, 307-311(1): 749-757.
[8]
De CASTROA V, LEGUEY T, MU?OZ A, et al. Microstructural characterization of Y2O3 ODS-Fe-Cr model alloys[J]. Journal of Nuclear Materials, 2009, 386-388: 449-452.
[9]
MUKHOPADHYAY D K, FROES F H, GELLES D S, et al. Development of oxide dispersion strengthened ferritic steels for fusion[J]. Journal of Nuclear Materials, 1998, 258-263: 1209-1215.
[10]
淮军锋, 郭万林, 李天文, 等.氧化物弥散强化高温合金MGH956的基本焊接性研究[J]. 材料工程,2008,(9):52-55.HUAI J F, GUO W L, LI T W, et al. Weldabilities of the oxide-dispersion-strengthened superalloy MGH956[J]. Journal of Materials Engineering, 2008, (9): 52-55.
[11]
田耘, 郭万林, 杨峥, 等.MGH956合金板材电子束焊和氩弧焊的接头组织与性能研究[J]. 航空材料学报, 2011,31(4):33-38.TIAN Y, GUO W L, YANG Z, et al. Microstructures and properties of MGH956 sheet joints with EB and TIG welding methods [J]. Journal of Aeronautical Materials, 2011, 31(4):33-38.
[12]
龚伟, 王一三, 王静. 原位烧结合成(Ti, V)C颗粒增强铁基复合材料的微观结构研究[J].粉末冶金技术, 2007,25(1): 35-38.GONG W, WANG Y S, WANG J. Microstructure study on in situ sintering synthesis of (Ti, V)C/ Fe composites[J]. Powder Metallurgy Technology, 2007, 25(1): 35-38.
[13]
吴朝锋, 马明星, 刘文今, 等. 激光原位制备复合碳化物颗粒增强铁基复合涂层及其耐磨性的研究[J].金属学报, 2009, 45(8): 1013-1018.WU C F, MA M X, LIU W J, et al. Study on wear resistance of laser cladding Fe-based composite coatings reinforced by in-situ multiple carbide particles[J]. Acta Metallurgica Sinica,2009, 45(8): 1013-1018.
[14]
RUNE L, TADEUSZ S, STANISLAW Z, et al. The role of vanadium in microalloyed steels[D]. Stokholm: Swedish Institute for Metals Research, 1999.
[15]
刘海峰, 刘耀辉, 于思荣. 原位合成VC颗粒增强钢基复合材料组织及其形成机理[J]. 复合材料学报, 2001, 18(4): 58-63. LIU H F, LIU Y H, YU S R. Microstructure of in situ VC particulates reinforced steel matrix composite and its forming mechanism[J]. Acta Materiae Compositae Sinica, 2001, 18(4): 58-63.
[16]
倪自飞, 孙扬善, 薛烽. 原位VC颗粒弥散强化304不锈钢的组织与性能[J].东南大学学报, 2010,40(6): 1308-1322. NI Z F, SUN Y S, XUE F. Microstructure and properties of in-situ VC dispersion-reinforced 304 stainless steel[J]. Journal of Southeast University, 2010, 40(6): 1308-1322.
[17]
梁连科.金属钒、碳化钒 (VC) 和氮化钒 (VN) 制备过程的热力学分析[J]. 钢铁钒钛, 1999, 20(3): 43-46. LIANG L K. Thermodynamic analysis of preparation of metallic vanadium (V), vanadium carbide (VC) and vanadium nitride (VN)[J]. Iron Steel Vanadium Titanium, 1999, 20(3): 43-46.
[18]
杜宝帅, 李清明, 王新洪, 等. 激光熔覆原位自生TiC-VC颗粒增强Fe基金属陶瓷涂层[J].焊接学报, 2007, 28(4): 65-68. DU B S, LI Q M, WANG X H, et al. In situ synthesis of TiC/VC particles reinforced Fe based metal matrix composite coating by laser cladding[J]. Transactions of the China Welding Institution, 2007, 28(4):65-68.