吴凯,刘国权,胡本芙,等.合金元素对新型镍基粉末高温合金的热力学平衡相析出行为的影响[J].北京科技大学学报,2009,31(6):719-727. WU Kai, LIU Guo-quan, HU Ben-fu, et al. Effect of alloy elements on the precipitation behavior of thermodynamic equilibrium phases in new type nickel-based P/M superalloys[J]. J Univ Sci Technol Beijing, 2009, 31(6): 719-727.
[2]
ZHANG Y, MARQUIS F D S. Effects of grain boundary morphology and dislocation substructure on the creep behavior of Udimet 710[A]. Superalloys 1996[C]. Pennsylvania: TMS, 1996. 391-399.
[3]
YAO X X, FANG Y, KIM H T, et al. The microstructural characteristics in a newly developed nickel-base cast superalloy[J]. Mater Charact, 1997, 38(2): 97-102.
[4]
RICE D, KANTZOS P, HANN B, et al. PM alloy 10-A 700 ℃ capable nickel-based superalloy for turbine disk applications[A]. Superalloys 2008. Pennsylvania: TMS, 2008[C]. 139-148.
[5]
HONG H U, KIM I S, CHOI B G, et al. The effect of grain boundary serration on creep resistance in a wrought nickel-based superalloy[J]. Mater Sci Eng: A, 2009, 517(1): 125-131.
[6]
YEH A C, LU K W, KUO C M, et al. Effect of serrated grain boundaries on the creep property of Inconel 718 superalloy[J]. Mater Sci Eng: A, 2011, 530: 525-529.
[7]
CARTER J L, ZHOU N, SOSA J M, et al. Characterization of strain accumulation at grain boundaries of nickel-based superalloys[A]. Superalloys 2012. Pennsylvania: TMS, 2012[C]. 43-52.
[8]
KOUL A K, GESSINGER G H. On the mechanism of serrated grain boundary formation in Ni-based superalloys[J]. Acta Metall, 1983, 31(7): 1061-1069.
[9]
HENRY M F, YOO Y S, YOON D Y, et al. The dendritic growth of γ' precipitates and grain boundary serration in a model nickel-base superalloy[J]. Metall Trans A, 1993, 24(8): 1733-1743.
[10]
DANFLOU H L, MACIA M, SANDERS T H, et al. Mechanisms of formation of serrated grain boundaries in nickel base superalloys[A]. Superalloys 1996[C]. Pennsylvania: TMS, 1996. 119-127.
[11]
MITCHELL R J, LI H Y, HUANG Z W. On the formation of serrated grain boundaries and fan type structures in an advanced polycrystalline nickel-base superalloy[J]. J Mater Process Technol, 2009, 209(2): 1011-1017.
[12]
LU X D, DENG Q, DU J H, et al. Effect of slow cooling treatment on microstructure of difficult deformation GH4742 superalloy[J]. J Alloys Compd, 2009, 477(1): 100-103.
[13]
LU X D, DU J H, DENG Q. Effect of slow cooling treatment on hot deformation behavior of GH4742 superalloy[J]. J Alloys Compd, 2009, 486(1): 195-198.
[14]
JIANG L, HU R, KOU H C, et al. The effect of M23C6 carbides on the formation of grain boundary serrations in a wrought Ni-based superalloy[J]. Mater Sci Eng: A, 2012, 536: 37-44.
[15]
HONG H U, KIM I S, CHOI B G. On the mechanism of serrated grain boundary formation in Ni-based superalloys with low γ' volume fraction. Superalloys 2012[A]. Pennsylvania: TMS, 2012[C]. 53-61.
[16]
WU K, LIU G Q, HU B F, et al. Formation mechanism and coarsening behavior of fan-type structures in a new Ni-Cr-Co-based powder metallurgy superalloy[J]. J Mater Sci, 2012, 47(11): 4680-4688.
[17]
胡本芙,刘国权,吴凯,等.新型镍基粉末高温合金γ'相扇形组织形成及演化行为研究[J].金属学报,2012,48(7):830-836. HU Ben-fu, LIU Guo-quan, WU Kai, et al. Morphological changes behavior of fan-type structure of γ' precipitates in nickel-based powder metallurgy superalloys[J]. Acta Metall Sin, 2012, 48(7): 830-836.
[18]
胡本芙,刘国权,吴凯,等.镍基粉末冶金高温合金中γ'相形态不稳定性研究[J].金属学报,2012,48(3):257-263. HU Ben-fu, LIU Guo-quan, WU Kai, et al. Morphological instability of γ' phase in nickel-based powder metallurgy superalloys[J]. Acta Metall Sin, 2012, 48(3): 257-263.
[19]
KOUL A K, THAMBURAJ R. Serrated grain boundary formation potential of Ni-based superalloys and its implications[J]. Metall Trans A, 1985, 16(1): 17-26.