全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2015 

TC1钛合金的腐蚀加工及其对基体性能影响

DOI: 10.11868/j.issn.1001-4381.2015.07.009, PP. 48-55

Keywords: TC1,腐蚀加工,加工速度,表面质量,力学性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

探讨了TC1钛合金腐蚀加工速度和质量的影响因素,测试了腐蚀加工后TC1钛合金的力学性能.氢氟酸浓度增加,加工速度提高;硝酸浓度较低时,腐蚀溶解占主导地位,浓度较高时,钝化起主要作用,当硝酸与氢氟酸的体积比为2时加工速度达到最大值;钛合金腐蚀加工速率与温度基本呈线性关系,加工时温度控制范围为28~30℃.复配添加剂可降低界面张力,它们的协同效应能够提高过渡区圆角质量、表面光亮度和腐蚀均匀性.腐蚀加工对TC1钛合金拉伸性能影响较小.腐蚀加工后的疲劳性能优于机械加工后的疲劳性能,其疲劳裂纹起源于加工面R圆角根部区域.

References

[1]  黄伯云,李成功,石力开,等. 有色金属材料手册[M]. 北京:化学工业出版社,2009. 513-740. HUANG Bo-yun, LI Cheng-gong, SHI Li-kai, et al. Handbook of Non-ferrous Metal Materials[M]. Beijing: Chemical Industry Press, 2009. 513-740.
[2]  GUO J J. Development and prospect of titanium industry in the world in 2005[J]. Rare Metals Letters, 2006, 25(7): 6-10.
[3]  RACK H J, QAZI J I. Titanium alloys for biomedical applications[J]. Materials Science and Engineering C, 2006, 26(8): 1269-1277.
[4]  梁春华,李晓欣. 先进材料在战斗机发动机上的应用与研究趋势[J]. 航空材料学报,2013,32(6):32-36. LIANG Chun-hua, LI Xiao-xin. Application and development trend of advanced materials for fighter engine[J]. Journal of Aeronautical Materials, 2013, 32(6): 32-36.
[5]  曹春晓. 航空用钛合金的发展概况[J]. 航空科学技术,2005,(4):3-6. CAO Chun-xiao. General development situation of titanium alloys for aviation[J]. Aviation Science and Technology, 2005, (4): 3-6.
[6]  付艳艳,宋月清. 航空用钛合金的研究与应用进展[J]. 稀有金属,2006,30(6):850-856. FU Yan-yan, SONG Yue-qing. Research and application of typical aerospace titanium alloys[J]. Chinese Journal of Rare Metals, 2006, 30(6): 850-856.
[7]  航空制造工程手册总编委会.航空制造工程手册-特种加工[M]. 北京: 航空工业出版社,1993. 600-645. Aviation Manufacturing Engineering Handbook Editorial Board. Aviation Manufacturing Engineering Handbook-Special Processing[M]. Beijing: Aviation Industry Press, 1993. 600-645.
[8]  杨丁. 金属蚀刻技术[M]. 北京:国防工业出版社,2008.143-147. YANG Ding. Metal Etching Technology[M]. Beijing: National Defence Industry Press, 2008.143-147.
[9]  CAKIR O. Chemical etching of aluminium[J]. Journal of Material Processing and Technology, 2008, 199(1-3): 337-340.
[10]  BONG Y U, KUPPUSWAMY R. Revealing Obliterated Engraved Marks on High Strength Aluminium Alloy (AA7010) Surface by Etching Technique[J]. Forensic Science International, 2010, 195(1-3): 86-92.
[11]  CAKIR O, TEMEL H, KIYAK M. Chemical etching of Cu-ETP copper[J]. Journal of Materials Processing Technology, 2005, 162-163: 275-279.
[12]  ARMCO STEEL CORPORATION. Chemical milling process and bath therefor[P]. UK Patent: 13040431970-3-19[1973-1-24].
[13]  MCDONNELL DOUGLAS CORPORATION. Chemical-milling of titanium and refractory metals[P]. USA Patent: 41167551977-9-6[1978-9-26].
[14]  TAKASAKI A, OJIMA K, TANEDA Y. New phase formation in titanium aluminide during chemical etching[J]. Scripta Metallurgica et Materialia, 1994, 30(9): 1095-1098.
[15]  SAY W C, TSAI Y Y. Surface characterization of cast Ti-6Al-4V in hydrofluoric-nitric pickling solutions[J]. Surface and Coatings Technology, 2004, 176: 337-343.
[16]  LIM P Y, SHE P L, SHIH H C. Microstructure effect on microtopography of chemically etched α+β Ti alloys[J]. Applied Surface Science, 2006, 253: 449-458.
[17]  金蕾,李荻. 钛合金化学铣切及电化学加工[J]. 稀有金属材料与工程,1989,(2):66-71. JIN Lei, LI Di. Chemical milling and electrochemical machining[J]. Rare Metal Materials and Engineering, 1989, (2): 66-71.
[18]  张红,朱彦海. 钛合金化学铣切工艺研究[J]. 航空工艺技术,1996,(6):29-30. ZHANG Hong, ZHU Yan-hai. Chemical milling of Ti alloy[J]. Aviation Technology, 1996, (6): 29-30.
[19]  戚运莲,邓炬,洪权,等. 钛和钛合金化学铣切中的吸氢及其影响[J]. 航空制造技术,2000,(2):30-32. QI Yun-lian, DENG Ju, HONG Quan, et al. Hydrogen absorption and effect occurred during chemical milling of Ti and Ti alloy[J]. Aeronautical Manufacturing Technology, 2000, (2): 30-32.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133