全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2015 

NaCl加入量对自蔓延高温燃烧合成法大规模制备的超细二硼化钛粉体性能的影响

DOI: 10.11868/j.issn.1001-4381.2015.07.003, PP. 14-20

Keywords: 超细TiB2粉体,稀释剂,自蔓延高温燃烧合成法,形貌,

Full-Text   Cite this paper   Add to My Lib

Abstract:

以TiO2、B2O3、Mg粉为原料,引入稀释剂NaCl,通过自蔓延高温燃烧合成法宏量制备了亚微米TiB2粉体,并对其进行了SEM(扫描电镜)、EDS(能谱)、XRD(X射线衍射)和粒度分析.用原子吸收光谱测定了浸出产物TiB2粉体中杂质Mg,O的含量.结果表明稀释剂加入量对样品形貌、粒度、物相有明显影响.随着NaCl含量的增加,制备的TiB2粉体的平均颗粒尺寸从496nm降低到268nm.产物浸出前主要由MgO,NaCl,TiB2和少量Mg3B2O6组成;浸出后前两相消失,产物为TiB2和少量Mg3B2O6.当原料中NaCl加入量k=0.5,1.0,1.5,2.0mol时,浸出产物中Mg3B2O6杂质含量极少,产品纯度均超过98%.稀释剂可以降低颗粒尺寸,提高产物纯度.采用此种自蔓延高温燃烧合成法可以大规模制备超细TiB2粉体.

References

[1]  SUBRAMANIAN C T S R, MURTHY C H, SURI A K. Synthesis and consolidation of titanium diboride[J]. International Journal of Refractory Metals & Hard Materials, 2007, 25(4): 345-350.
[2]  KRISHNARAO R V, SUBRAHMANYAM J. Studies on the formation of TiB2 through carbothermal and B2O3 reduction of TiO2[J]. Materials Science and Engineering: A, 2003, 362:145-151.
[3]  KHANRA A K, GODKHINDI M M, PATHAK L C. Sintering behaviour of ultra-fine titanium diboride powder prepared by self-propagating high-temperature synthesis (SHS) technique[J]. Materials Science and Engineering: A, 2007, 454-455: 281-287.
[4]  BILGI E, CAMURLU H E, AKGUN B, et al. Formation of TiB2 by volume combustion and mechanochemical process[J]. Materials Research Bulletin, 2008, 43: 873-881.
[5]  WELHAM N J. Formation of TiB2 from rutile by room temperature ball milling[J]. Minerals Engineering, 1999, 12: 1213-1224.
[6]  MUNRO R G. Material properties of titanium diboride[J]. Journal of Research of the National Institute of Standards and Technology, 2000, 105 (5): 709-720.
[7]  SUNDARAM V, LOGAN K V, SPEYER R F. Reaction path in the magnesium thermite reaction to synthesize titanium diboride[J]. Journal of Materials Research, 1997, 12 (10): 2657-2664.
[8]  HUANG Y, LEE J K. Preparation of TiB2 powders by mechanical alloying[J]. Materials Letters, 2002, 54(1) : 1-7.
[9]  LU L, LAI M O, SU Y, et al. In situ TiB2 reinforced A1 alloy composites[J]. Scripta Materialia, 2001, 45(9) : 1017-1023.
[10]  RADEV D D, MARINOV M. Properties of titanium and zirconium diborides obtained by self-propagated high-temperature synthesis[J]. Journal of Alloys and Compounds, 1996, 244(1-2) :48-51.
[11]  XIANG X, QING Y. Progress in TiB2 and its composites[J]. Journal of Ceramics, 1999, 20(2): 112-117.
[12]  TANG Wen-ming, ZHENG Zhi-xiang, WU Yu-cheng, et al. Synthesis of TiB2 nanocrystalline powder by mechanical alloying[J]. Transactions of Nonferrous Metals Society of China, 2006, 16 : 613—617.
[13]  LIU Guang-hua, YANG Kun, LI Jiang-tao, et al. Combustion synthesis of nanosized β-SiC powder on a large scale[J]. Journal of Physical Chemistry C, 2008, 112 (16) : 6285-6292.
[14]  NEKAHI ATIYE, FIROOZI SADEGH. Effect of KCl, NaCl and CaCl2 mixture on volume combustion synthesis of TiB2 nanoparticles[J]. Materials Research Bulletin, 2011, 46: 1377-1383.
[15]  KHANRA A K, PATHAKB L C, MISHRAB S K,et al. Effect of NaCl on the synthesis of TiB2 powder by a self-propagating high-temperature synthesis technique[J]. Materials Letters, 2004,58: 733-738.
[16]  CAMURLU H E, MAGLIA F. Preparation of nano-size ZrB2 powder by self-propagating high temperature synthesis[J]. Journal of the European Ceramic Society, 2009, 29(9):1051-1506.
[17]  LA Pei-qing, HAN Shao-bo, JU Qian. Study of the influence of different stoichometry of Mg in staring mixture on particle size and purity of ZrB2 powder prepared by combustion synthesis[J]. Powder Metallurgy Technology, 2013, 31(1) : 1-7.
[18]  MERZHANOV A G. Combustion and Plasma Synthesis of High-Temperature Materials[M]. New York: VCH Press, 1990. 204-251.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133