李敬勇, 亢晓亮, 赵阳阳. 搅拌头几何特征对搅拌摩擦焊试板温度场的影响[J]. 航空材料学报, 2013, 33(1): 28-32. LI Jing-yong, KANG Xiao-liang, ZHAO Yang-yang. Influence of geometrical features of stir pins on temperature distributions within workpiece during friction stir welding of aluminum alloys[J]. Journal of Aeronautical Materials, 2013, 33(1): 28-32.
[2]
张昭,张洪武. 基于欧拉模型的搅拌摩擦焊接界面行为及产热数值[J]. 塑性工程学报,2012, 19(6): 130-133. ZHANG Zhao, ZHANG Hong-wu. Eulerian-model-based numerical researches on interface behavior and heat generation in friction stir welding process[J]. Journal of Plasticity Engineering, 2012, 19(6): 130-133.
[3]
张正伟,张昭,刘亚丽,等. 搅拌摩擦焊数值模拟过程中不同转速与热输入功率之间关系研究[J]. 焊接,2012, (4): 19-24. ZHANG Zheng-wei, ZHANG Zhao, LIU Ya-li, et al. Effect of rotation speed on heat generations in simulation of friction stir welding[J]. Welding & Joining, 2012, (4): 19-24.
[4]
姬书得,孟庆国,邹爱丽,等. 搅拌针形状影响搅拌摩擦焊过程金属塑性流动规律的数值模拟[J]. 焊接学报,2013, 34(2): 93-96. JI Shu-de, MENG Qing-guo, ZOU Ai-li, et al. Effect of pin geometry on material flow during simulations of friction stir welding[J]. Transactions of the China Welding Institution, 2013, 34(2): 93-96.
[5]
殷鹏飞,张蓉,熊江涛,等. 搅拌摩擦焊准稳态热力耦合过程数值模拟研究[J]. 物理学报,2013, 62(1): 018102. YIN Peng-fei, ZHANG Rong, XIONG Jiang-tao, et al. Numerical simulation of coupled thermo-mechanical process of friction stir welding in quasi-steady-state[J]. 2013, 62(1): 018102.
[6]
HEIDARZADEH A, SAEID T, KHODAVERDIZADEH H, et al. Establishing a mathematical model to predict the tensile strength of friction stir welded pure copper joints[J]. Metallurgical and Materials Transactions B, 2013, 44: 175-183.
[7]
CAVALIERE P, CAMPANILE G, PANELLA F, et al. Effect of welding parameters on mechanical and microstructural properties of AA6056 joints produced by friction stir welding[J]. Journal of Materials Processing Technology, 2006, 180: 263-270.
[8]
张昭,张洪武. 搅拌摩擦焊中动态再结晶及硬度分布的数值模拟[J]. 金属学报,2006, 42(9): 998-1002. ZHANG Zhao, ZHANG Hong-wu. Numerical simulation of dynamic recrystallization and hardness distribution in friction stir welding process[J]. Acta Metallurgica Sinica, 2006, 42(9): 998-1002.
[9]
PAN W X, LI D X ,TARTAKOVSKY A M, et al. A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: process modeling and simulation of microstructure evolution in a magnesium alloy[J]. International Journal of Plasticity, 2013, 48: 189-204.
[10]
BUFFA G, DUCATO A, FRATINI L. FEM based prediction of phase transformations during friction stir welding of Ti6Al4V titanium alloy[J]. Materials Science and Engineering: A, 2013, 581: 56-65.
[11]
CHANG C I, LEE C J, HUANG J C. Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys[J]. Scripta Materialia, 2004, 51: 509-514.
[12]
GERLICH A, YAMAMOTO M, NORTH T H. Strain rates and grain growth in Al 5754 and Al 6061 friction stir spot welds[J]. Metallurgical and Materials Transactions A, 2007, 38: 1291-1302.
[13]
ROBSON J D, CAMPBELL L. Model for grain evolution during friction stir welding of aluminium alloys[J]. Science and Technology of Welding and Joining, 2010, 15(2): 171-176.
[14]
张昭,刘亚丽,陈金涛,等. 搅拌摩擦焊接过程中材料流动形式[J]. 焊接学报,2007, 28(11): 17-21. ZHANG Zhao, LIU Ya-li, CHEN Jin-tao, et al. Material flow in friction stir welding[J]. Transactions of the China Welding Institution, 2007, 28(11): 17-21.
[15]
ZHANG Z, CHEN J T. Computational investigations on reliable finite element-based thermomechanical-coupled simulations of friction stir welding[J]. International Journal of Advanced Manufacturing Technology, 2012, 60: 959-975.
[16]
张昭,别俊. 搅拌摩擦焊接过程数值仿真的完全热力耦合模型[J].中国机械工程,2008,19: 1240-1244. ZHANG Zhao, BIE Jun. Fully coupled thermo-mechanical model for numerical simulation of friction stir welding process[J]. China Mechanical Engineering, 2008,19: 1240-1244.
[17]
GERLICH A, YAMAMOTO M, NORTH T H. Strain rates and grain growth in Al 5754 and Al 6061 friction stir spot welds[J]. Metallurgical and Materials Transactions A, 2007, 38: 1291-1302.
[18]
GEERTRUYDEN W H V, MISIOLEK W Z, PAUL T, et al. Grain structure evolution in a 6061 aluminum alloy during hot torsion[J]. Materials Science and Engineering: A, 2006, 419:105-114.
[19]
RAJAKUMAR S, BALASUBRAMANIAN V. Establishing relationships between mechanical properties of aluminium alloys and optimised friction stir welding process parameters[J]. Materials and Design, 2012, 40: 17-35.
[20]
KIM S, LEE C G, KIM S J. Fatigue crack propagation behavior of friction stir welded 5083-H32 and 6061-T651 aluminum alloys[J]. Materials Science and Engineering: A, 2008, 478: 56-64.
[21]
LIU F C, MA Z Y. Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy[J]. Metallurgical and Materials Transactions A, 2008,39: 2378-2388.
[22]
SATO Y S, URATA M, KOKAWA H. Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063[J]. Metallurgical and Materials Transactions A, 2002,33: 625-635.
[23]
ASGHARZADEH H, SIMCHI A, KIM H S. Dynamic restoration and microstructural evolution during hot deformation of a P/M Al6063 alloy[J]. Materials Science and Engineering: A, 2012, 542: 56-63.
[24]
DE A, DEBROY T. A perspective on residual stresses in welding[J]. Science and Technology of Welding and Joining, 2011, 16(3): 204-208.
[25]
张正伟,张昭,张洪武. 搅拌摩擦焊残余应力及残余变形数值分析[J]. 计算力学学报,2013, 30(增刊1): 16-21. ZHANG Zheng-wei, ZHANG Zhao, ZHANG Hong-wu. Investigations on residual stress and residual distortion of friction stir welding[J]. Chinese Journal of Computational Mechanics, 2013, 30(Suppl 1): 16-21.