全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2015 

III型载荷分量对不同显微组织套管钻井用钢断裂韧性的影响

DOI: 10.11868/j.issn.1001-4381.2015.09.011, PP. 66-73

Keywords: 套管钻井用钢,显微组织,断裂韧性,I/III复合型,断口形貌

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用疲劳试验机及SEM研究三种不同显微组织套管钻井钢I/III复合型断裂韧性。结果表明珠光体-铁素体(PF)钢和铁素体-贝氏体-回火马氏体(FBM)钢的JT均随着III型分量增加先略有增加,然后单调下降,而回火马氏体(TM)钢则呈单调下降趋势,这归因于不同显微组织构成导致不同断口形貌。同时发现,在不同III型载荷分量下,TM钢均具有最大的JT,PF钢均具有最小的JT,FBM钢居中。对于三种钢,JI和J之间均具有线性关系,且材料强度越高,线性系数越小,更容易在剪切载荷下发生断裂。III

References

[1]  KUMARA A S, KUMARB B R, DATTAC G, et al. Effect of microstructure and grain size on the fracture toughness of a micro-alloyed steel[J]. Materials Science and Engineering: A, 2010, 527:954-960.
[2]  毕宗岳, 杨军, 牛靖, 等. X100高强管线钢焊接接头的断裂韧性[J]. 金属学报, 2013, 49(5):576-582. BI Zong-yue, YANG Jun, NIU Jing, et al. Fracture toughness of welded joints of X100 high-strength pipeline steel[J]. Acta Metallurgica Sinica, 2013, 49(5): 576-582.
[3]  钟警, 郑子樵, 佘玲娟, 等. 时效制度对AA6156铝合金拉伸性能和断裂韧性的影响[J]. 稀有金属材料与工程, 2013,42(10):2163-2168. ZHONG Jing, ZHENG Zi-qiao, SHE Ling-juan, et al. Effects of aging treatments on tensile properties and fracture toughness of AA6156 aluminum alloy[J]. Rare Metal Materials and Engineering, 2013,42(10):2163-2168.
[4]  KOTOW K J, PRITCHARD D M. Riserless drilling with casing: deepwater casing seat optimization[A]. SPE/IADC Drilling Conference, Proceedings[C]. New Orleans, LA, USA: The Society of Petroleum Engineers, 2010. 116-129.
[5]  王绪华. 套管钻井技术发展与应用[J]. 焊管, 2009, 32(10): 33-36. WANG Xu-hua. The development and application of casing drilling technology[J]. Welded Pipe and Tube, 2009, 32(10): 33-36.
[6]  BAILEY G, STRICKLER R D, HANNAHS D, et al. Evaluation of a casing drilling connection subjected to fatigue and combined load testing[A]. The 2006 Offshore Technology Conference[C]. Houston, Texas, USA: Sponsor Society Committees of the Offshore Technology Conference, 2006. 1-7.
[7]  ZHAO Z X, GAO D L. Casing strength degradation due to torsion residual stress in casing drilling[J]. Journal of Natural Gas Science and Engineering, 2009, 1(4-5): 154-157.
[8]  CHANDRA R B, SRINIVAS M, KAMAT S V. The effect of volume fraction of primary α phase on fracture toughness behaviour of Timetal 834 titanium alloy under mode I and mixed mode I/III loading[J]. Materials Science and Engineering: A, 2009, 520(1-2): 29-35.
[9]  PARADKAR A G, KAMAT S V. Fracture toughness of Ti-15Al-8Nb alloy under mixed mode I/III loading[J].Materials Science and Engineering: A, 2011, 528(9):3283-3288.
[10]  KAMAT S V, SRINIVAS M, RAMA R P. Mixed mode I/III fracture toughness of Armco iron[J]. Acta Materialia, 1998, 46(14): 4985-4992.
[11]  XU T H, FENG Y R, SONG S Y, et al. Fatigue crack propagation behaviour of steel with different microstructures[J]. Materials Science and Engineering: A,2012, 551: 110-115.
[12]  KUMAR A M, HIRTH J P, HOAGLAND R, et al. A suggested test procedure to measure mixed mode I-III fracture toughness of brittle materials[J]. Journal of Testing and Evaluation, 1994, 22(4): 327-334.
[13]  LU M X, ZHENG X L. A new microcomputer-aided system for measuring fatigue crack propagation threshold and selecting testing parameters[J]. Engineering Fracture Mechanics,1993, 45(6): 889-896.
[14]  SIOW K S, MANOHARAN M. Mixed mode fracture toughness of lead-tin and tin-silver solder joints with nickel-plated substrate[J]. Materials Science and Engineering: A, 2005, 404(1-2): 244-250.
[15]  TUMA J V. Low-temperature tensile properties, notch and fracture toughness of steels for use in nuclear power plant[J]. Nuclear Engineering and Design, 2002, 211(2-3): 105-119.
[16]  TORIBIO J, MATOS J C, GONZáLEZ B. Micro- and macro-approach to the fatigue crack growth in progressively drawn pearlitic steels at different R-ratios[J]. International Journal of Fatigue, 2009, 31(11-12): 2014-2021.
[17]  LI L F, YANG W Y, SUN Z Q. Microstructure evolution of a pearlitic steel during hot deformation of undercooled austenite and subsequent annealing[J]. Metallurgical and Materials Transactions A, 2008, 39(3): 624-635.
[18]  SALEMIA A, ABDOLLAH Z A. The effect of tempering temperature on the mechanical properties and fracture morphology of a NiCrMoV steel[J]. Materials Characterization, 2008, 59(4): 484-487.
[19]  FENG X X, KUMAR A M, HIRTH J P. Mixed mode I/III fracture toughness of 2034 aluminum alloys[J]. Acta Metallurgica et Materialia, 1993, 41(9): 2755-2764.
[20]  RAGHAVACHARY S, ROSENFIELD A R, HIRTH J P. Mixed mode I/III fracture toughness of an experimental rotor steel[J]. Metallurgical and Materials Transactions A, 1990, 21(9): 2539-2545.
[21]  KAMAT S V, HIRTH J P. Effect of aging on mixed-mode I/III fracture toughness of 2034 aluminum alloys[J]. Acta Materialia, 1996, 44(3): 1047-1054.
[22]  CHANDRA R B, SRINIVAS M, KAMAT S V. The effect of mixed mode I/III loading on the fracture toughness of Timetal 834 titanium alloy[J]. Materials Science and Engineering: A, 2008, 476(1-2): 162-168.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133