全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2015 

合金元素对Fe-Mn-C系TWIP钢力学行为的影响

DOI: 10.11868/j.issn.1001-4381.2015.09.006, PP. 30-38

Keywords: TWIP钢,合金元素,力学行为,层错能

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用热力学计算、静态拉伸、XRD、OM与SEM等方法分析了Fe-Mn-C系TWIP钢中合金元素对基体力学行为的影响。结果表明TWIP钢中Mn含量增加时,基体的屈服强度和抗拉强度均减小,总伸长率增大;C含量增加时,其屈服强度和抗拉强度先增大后减小,在0.6%(质量分数,下同)时存在最大值;当Mn含量为20%时,TWIP钢总伸长率随C含量增加而增大,而Mn含量为22%时则相反。TWIP钢的强塑积随Mn含量的增加而增大,其在C含量为0.4%试样中的体现尤为明显。对于Mn含量为20%的TWIP钢,其强塑积随C含量增加而增大;而对于Mn含量为22%的TWIP钢,其强塑积随C含量增加而减小。

References

[1]  De COOMEN B C, KWON O, CHIN K G. State-of-the-knowledge on TWIP steel[J]. Materials Science and Technology, 2012, 28(5): 513-527.
[2]  GIGACHER G, PIERER R, WIENER J, et al. Metallurgical aspects of casting high-manganese steel grades[J]. Advanced Engineering Materials, 2006, 8(11): 1096-1100.
[3]  ALLAIN S, CHATEAU J P, BOUAZIZ O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J]. Materials Science and Engineering: A, 2004, 387: 158-162.
[4]  DUMAY A, CHATEAU J P, ALLAIN S, et al. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel[J]. Materials Science and Engineering: A, 2008, 483: 184-187.
[5]  DING H, TANG Z, LI W, et al. Microstructures and mechanical properties of Fe-Mn-(Al, Si) TRIP/TWIP steels[J]. Journal of Iron and Steel Research International, 2006, 13(6): 66-70.
[6]  MI Z L, TANG D, YAN L, et al. High-strength and high-plasticity TWIP steel for modern vehicle[J]. Journal of Materials Science and Technology, 2005, 21(4): 451-454.
[7]  房秀慧, 杨平, 鲁法云, 等. 高锰TWIP钢拉伸时织构演变和孪生弱化织构的作用[J]. 武汉科技大学学报, 2011, 34(6): 424-431. FANG Xiu-hui, YANG Ping, LU Fa-yun, et al. Texture evolution and texture weakening by twinning in tensile-deformed high manganese TWIP steels[J]. Journal of Wuhan University of Science and Technology, 2011, 34(6): 424-431.
[8]  陆惠菊,何燕霖,李麟. 高锰钢中的TRIP和TWIP效应以及层错能研究[J]. 上海金属, 2011, 33(1): 1-7. LU Hui-ju, HE Yan-lin, LI Lin. Study of TRIP and TWIP effects and stacking fault in high Mn steels[J]. Shanghai Metals, 2011, 33(1): 1-7.
[9]  NAKANO J, JACQUES P J. Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe-Mn and Fe-Mn-C systems[J]. Calphad, 2010, 34(2): 167-175.
[10]  DINSDALE A T. SGTE data for pure elements[J]. Calphad, 1991, 15(4): 317-425.
[11]  HUANG W. A thermodynamic assessment of the Fe-Mn-C system[J]. Metallurgical Transactions A, 1990, 21(8): 2115-2123.
[12]  HOFFMANN S, BLECK W, BERME B. In situ characterization of deformation behavior of austenitic high manganese steels[J]. Steel Research International, 2012, 83(4): 379-384.
[13]  HONG S, SHIN S Y, LEE J, et al. Serration phenomena occurring during tensile tests of three high-manganese twinning-induced plasticity (TWIP) steels[J]. Metallurgical and Materials Transactions A, 2014, 45(2): 633-646.
[14]  LI D Z, WEI Y H, XU B S, et al. Development in fundamental research on TWIP steel used in automobile industry[J]. Ironmaking & Steelmaking, 2011, 38(7): 540-545.
[15]  ADLER P H, OLSON G B, OWEN W S. Strain hardening of Hadfield manganese steel[J]. Metallurgical and Materials Transactions A, 1986, 17(10): 1725-1737.
[16]  GRASSEL O, FROMMEYER G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels[J]. Materials Science & Technology, 1998, 14(12): 1213-1217.
[17]  GRASSEL O, KRUGER L, FROMMEYER G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development properties application[J]. International Journal of Plasticity, 2000, 16(10): 1391-1409.
[18]  衣海龙, 徐薇, 龙雷周, 等. 热轧钛微合金化TRIP钢的组织与性能研究[J]. 材料工程, 2014, (12):66-71. YI Hai-long, XU Wei, LONG Lei-zhou, et al. Research on microstructure and mechanical properties of hot rolled Ti-microalloyed TRIP steel[J]. Journal of Materials Engineering, 2014, (12):66-71.
[19]  KWON O, LEE K Y, KIM G S, et al. New trends in advanced high strength steel developments for automotive application[J]. Materials Science Forum, 2010, 638-642: 136-141.
[20]  FROMMEYER G, BRUX U, NEUMANN P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes[J]. ISIJ International, 2003, 43(3): 438-446.
[21]  SCOTT C, ALLAIN S, FARAL M, et al. The development of a new Fe-Mn-C austenitic steel for automotive applications[J]. Revue de Métallurgie, 2006, 103(6): 293-302.
[22]  MOON K H, PARK M S, YOO S, et al. Molten mold flux technology for continuous casting of the ULC and TWIP steel[A]. 8 Pacific Rim International Congress on Advanced Materials and Processing[C]. New Jersey: John Wiley & Sons, Inc, 2013.735-745.
[23]  苏钰, 李麟, 何慎, 等. TWIP 钢退火织构与晶界特征[J]. 材料热处理学报, 2010, 31(7): 71-76. SU Yu, LI Lin, HE Shen, et al. Annealing texture and grain boundary character of TWIP steels[J]. Transactions of Materials and Heat Treatment, 2010, 31(7): 71-76.
[24]  李激光, 丁亚杰, 彭兴东, 等. 水淬工艺对 TWIP 钢显微组织和力学性能的影响[J]. 金属学报, 2010, 46(2): 221-226. LI Ji-guang, DING Ya-jie, PENG Xing-dong, et al. Effect of water quenching process on the microstructure and mechanical properties of TWIP steel[J]. Acta Metallurgica Sinica, 2010, 46(2): 221-226.
[25]  LAN P, SONG L, DU C, et al. Analysis of solidification microstructure and hot ductility of Fe-22Mn-0.7C TWIP steel[J]. Materials Science and Technology, 2014, 30(11): 1297-1304.
[26]  王会珍, 杨平, 毛卫民. 板条状马氏体形貌和惯习面的3D EBSD分析[J]. 材料工程, 2013, (4):74-80. WANG Hui-zhen, YANG Ping, MAO Wei-min. 3D EBSD analysis of morphology and habit plane for lath martensite[J]. Journal of Materials Engineering, 2013, (4):74-80.
[27]  CHEN L, ZHAO Y, QIN X. Some aspects of high manganese twinning-induced plasticity(TWIP) steel, a review[J]. Acta Metallurgica Sinica (English Letters), 2013, 26(1): 1-15.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133