全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2015 

Mn含量对热轧超低碳钛低合金钢组织与力学性能的影响

DOI: 10.11868/j.issn.1001-4381.2015.09.001, PP. 1-5

Keywords: Mn含量,超低碳,低合金钢,,组织与性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

实验钢在传统C-Mn钢的基础上添加低合金元素Ti,通过调整钢中Mn元素含量,同时采用简便的控制轧制与控制冷却工艺,获得了良好的组织形态及纳米尺度析出物,从而在保证优良延伸性能的前提下大幅度提高了钢板的强度,显著降低了钢材成本。使用金相显微镜(OM)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对微观组织进行观察。结果表明当实验钢Mn含量从1.05%(质量分数,下同)提高至1.5%,平均晶粒尺寸从6.4μm细化至5.2μm;基体中纳米尺度TiC的析出量明显增加;屈服强度、抗拉强度和断后伸长率分别提高了56.7,42.2MPa和1.2%,达到了558.7,662.2MPa和22.4%。

References

[1]  FUNAKAWA Y, SHIOZAKI T, TOMITA K, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides[J]. ISIJ International, 2004, 44(11): 1945-1951.
[2]  SEKITA T, KANETO S, HASUNO S, et al. Materials and technologies for automotive use[R]. Japan: JFE Technical Report, 2004.
[3]  周荣锋, 杨王玥, 孙祖庆. 不同Mn含量低碳钢过冷奥氏体形变过程中的铁素体相变[J]. 金属学报, 2004, 40(1): 1-7. ZHOU Rong-feng, YANG Wang-yue, SUN Zu-qing. Ferrite transformation during deformation of undercooled austenite in low carbon steels with different Mn contents[J]. Acta Metallurgica Sinica, 2004, 40(1): 1-7.
[4]  HU J, DU L X, WANG J J, et al. Structure-mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling[J]. Materials Science and Engineering: A, 2013, 585: 197-201.
[5]  IRVING K J, PICKERING F B, GLADMAN T. Grain-refined C-Mn steels[J]. Journal of the Iron and Steel Institute, 1967, 205(2): 161-182.
[6]  AKBEN M G, CHANDRA T, PLASSIARD P, et al. Dynamic precipitation and solute hardening in a titanium microalloyed steel containing three levels of manganese[J]. Acta Metallurgica, 1984, 32(4): 591-601.
[7]  WANG Z Q, SUN X J, YANG Z G, et al. Effect of Mn concentration on the kinetics of strain induced precipitation in Ti microalloyed steels[J]. Materials Science and Engineering: A, 2013, 561:212-219.
[8]  王有铭, 李曼云, 韦光. 钢材的控制轧制和控制冷却[M].北京: 冶金工业出版社, 2012.54-55.
[9]  雍岐龙. 钢铁材料中的第二相[M]. 北京: 冶金工业出版社, 2006.310-316.
[10]  ARONSON H I. The Mechanism of Phase Transformation in Crystalline[M]. London: Institute of Metals, 1969.2790.
[11]  PICKERING F B. Physical Metallurgy of Microalloyed Steels[M]. London: Applied Science Publishers, 1978.15-20.
[12]  RODRIGUES P C M, PERELOMA E V, SANTOS D B. Mechanical properties of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling[J]. Materials Science and Engineering: A, 2000, 283(1-2): 136-143.
[13]  MORRISON W B. Microalloy steels-the beginning[J]. Materials Science and Technology, 2009, 25(9): 1066-1073.
[14]  岳重祥, 白晓虹, 刘东升. 利用TMCP开发F550高强度船板钢的实验研究[J]. 材料工程, 2013, (2): 7-11. YUE Chong-xiang, BAI Xiao-hong, LIU Dong-sheng. F550 high strength plate steel for shipbuilding produced by TMCP[J]. Journal of Materials Engineering, 2013, (2): 7-11.
[15]  王建锋,李光强,温德智,等. 600MPa级钛微合金化高强钢的组织与性能研究[J]. 武汉科技大学学报, 2010, 33(6): 561-565. WANG Jian-feng, LI Guang-qiang, WEN De-zhi, et al. Microstructure and properties of 600 MPa Ti-microalloyed high strength strip[J]. Journal of Wuhan University of Science and Technology, 2010, 33(6): 561-565.
[16]  HU J, DU L X, WANG J J. Effect of V on intragranular ferrite nucleation of high Ti bearing steel[J]. Scripta Materialia, 2013, 68(12): 953-956.
[17]  衣海龙, 徐洋, 徐兆国, 等. 低成本780MPa级热轧高强钢的组织与性能[J]. 机械工程材料, 2010, 34(12): 37-39. YI Hai-long, XU Yang, XU Zhao-guo, et al. Microstructure and properties of low cost 780MPa hot-rolled high-strength steel[J]. Materials for Mechanical Engineering, 2010, 34(12): 37-39.
[18]  MISRA R D K, NATHANI H, HARTMANN J E, et al. Microstructural evolution in a new 770MPa hot rolled Nb-Ti microalloyed steel[J]. Materials Science and Engineering: A, 2005, 394(1-2): 339-352.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133