NASL R. Design, preparation and properties of non-oxide CMCS for application in engines and nuclear reactors: An overview: Symposium on multifunctional materials and structures[J]. Composites Science and Technology, 2003, 64(2): 155-170.
[2]
王锟, 陈刘定, 郑翔. 平纹编制C/SiC复合材料在室温和高温环境下的拉伸行为[J]. 航空材料学报, 2010, 30(1): 78-84. WANG Kun, CHEN Liu-ding, ZHENG Xiang. Comparison of tensile behavior of plain-woven carbon/silicon carbide composites at room temperature and high temperature[J]. Journal of Aeronautical Materials, 2010, 30(1): 78-84.
[3]
XU Y D, CHENG L F, ZHANG L T, et al. Carbon silicon carbide composites prepared by chemical vapor infiltration combined with silicon melt infiltration[J].Carbon,1999,37(8):1179-1187.
[4]
QUEMARDA L, REBILLAT F, GUETTE A, et al. Self-healing mechanisms of a SiC fiber reinforced multi-layered ceramic matrix composite in high pressure steam environments[J]. Journal of the European Ceramic Society, 2007, 27(4): 2085-2094.
[5]
周新贵, 张长瑞, 何新波, 等. 热解碳涂层碳纤维增强碳化硅复合材料热压工艺研究[J]. 材料工程, 2000, (3): 39-41. ZHOU Xin-gui, ZHANG Chang-rui, HE Xin-bo, et al. A study on the hot press of pyrolysised carbon coated carbon fiber reinforced silicon carbide composite[J]. Journal of Materials Engineering, 2000, (3): 39-41.
[6]
焦桓, 周万城, 李翔. CVD法水蒸气条件下制备SiC块体[J]. 材料工程, 2000, (12): 12-14,18. JIAO Huan, ZHOU Wan-cheng, LI Xiang. Growth rate and deposition process of SiC with water vapor introduced by CVD[J]. Journal of Materials Engineering, 2000, (12): 12-14,18.
[7]
WU S J, CHENG L F, YANG W B, et al. Oxidation protective multilayer CVD SiC coatings modified by a graphitic B-C interlayer for 3D C/SiC composite[J]. Applied Composite Materials, 2006, 13(6): 397-406.
[8]
FARIZY G, CHERMANT J L, SANGLEBOEUF J C, et al. SiCf-SiBC composites: microstructural investigations of the as received material and creep tested composites under an oxidative environment[J]. Journal of Microscopy-oxford, 2003, 210(2): 176-186.
[9]
张立同, 成来飞, 徐永东, 等. 自愈合碳化硅陶瓷基复合材料研究及应用进展[J]. 航空材料学报, 2006, 26(3): 226-232. ZHANG Li-tong, CHENG Lai-fei, XU Yong-dong, et al. Progress on self-healing silicon carbide ceramic matrix composites and its applications[J]. Journal of Aeronautical Materials, 2006, 26(3): 226-232.
[10]
SCHMIDT S, BEYER S, KNABE H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J].Acta Astronautica,2003,55(3):409-420.
[11]
POPLE J A, HEAD-GORDON M, FOX D J, et al. Gaussian-1 theory: a general procedure for prediction of molecular energies[J]. The Journal of Chemical Physics, 1989, 90(10): 5622-5629.
[12]
CURTISS L A, JONES C, TRUCKS G W, et al. Gaussian-1 theory of molecular energies for second-row compounds[J]. The Journal of Chemical Physics, 1990, 93(4): 2537-2545.
[13]
CURTISS L A, RAGHAVACHARI K, TRUCKS G W, et al. Gaussian-2 theory for molecular energies of first-and second-row compounds[J]. The Journal of Chemical Physics, 1991, 94(11): 7221-7230.
[14]
CURTISS L A, RAGHAVACHARI K, POPLE J A. Gaussian-2 theory using reduced m?ller-pleset orders[J]. The Journal of Chemical Physics, 1993, 98(2): 1293-1298.
[15]
CURTISS L A, CARPENTER J E, RAGHAVACHARI K, et al. Validity of additivity approximations used in Gaussian-2 theory[J]. The Journal of Chemical Physics, 1992, 96(12): 9030-9034.
[16]
CURTISS L A, RAGHAVACHARI K, REDFERN P C, et al. Gaussian-3 theory for molecules congaining first and second-row atoms[J]. 1998, 109(18): 7746-7754.
[17]
CURTISS L A, REDFERN P C, RAGHAVACHARI K, et al. Gaussian-3 theory using reduced M?ller-Pleset order[J]. The Journal of Chemical Physics, 1999, 110(10): 4703-4709.
[18]
BABOUL A G, CURTISS L A, REDFERN P C, et al. Gaussian-3 theory using density functional geometries and zero-point energies[J]. The Journal of Chemical Physics, 1999, 110(10): 7650-7657.
[19]
CURTISS L A, REDFERN P C, RAGHAVACHARI K, et al. Assessment of gaussian-3 and density-functional theories on the G3/05 test set of experimental energies[J]. The Journal of Chemical Physics, 2005, 123(12): 124107-1-12.
[20]
CURTISS L A, REDFERN P C, KRISHNAN R. Gaussian-4 theory[J]. The Journal of Chemical Physics, 2007, 126(8): 084108-1-12.
[21]
CURTISS L A, REDFERN P C, KRISHNAN R. Gaussian-4 theory using reduced order perturbation theory[J]. The Journal of Chemical Physics, 2007, 127(12): 124105-1-8.
[22]
NYDEN M R, PETERSSON G A. Complete basis set correlation energies.1.the asymptotic convergence of pair natural orbital expansions[J]. The Journal of Chemical Physics, 1981, 75(4):1843-1862.
[23]
PETERSSON G A, BENNETT A, TENSFELDT T G, et al. A complete basis set model chemistry.1.The total energy of closed-shell atoms and hydrides of the first-row elements [J]. The Journal of Chemical Physics, 1988, 89(4): 2193-2218.
[24]
PETERSSON G A, ALLAHAM M A. A complete basis set model chemistry.2.Open-shell systems and the total energies of the first-row atoms[J]. The Journal of Chemical Physics, 1991, 94(9): 6081-6090.
[25]
PETERSSON G A, TENSFELDT T G, MONTGOMERY J A, et al. A complete basis set model chemistry.3.The complete basis set-quadratic configuration interaction family of methods[J]. The Journal of Chemical Physics, 1991, 94(9): 6091-6101.
[26]
MONTGOMERY J A, OCHTERSKI J W, PETERSSON G A. A complete basis set model chemistry.4.an improved atomic pair natural orbital method[J]. The Journal of Chemical Physics, 1994, 101(7): 5900-5909.
[27]
OCHTERSKI J W, PETERSSON G A, MONTGOMERY J A. A complete basis set model chemistry.5.Extensions to six or more heavy atoms[J]. The Journal of Chemical Physics, 1996, 104(7):2598-2619.
[28]
MONTGOMERY J A, FRISCH M J, OCHTERSKI J W, et al. A complete basis set model chemistry.6.Use of density functional geometries and frequencies[J]. The Journal of Chemical Physics, 1999, 110(6): 2822-2827.
[29]
WOOD G P F, PETERSSON G A, BARNES E C, et al. A restricted-open-shell complete-basis-set model chemistry[J]. The Journal of Chemical Physics, 2006, 125(9):094106-1-16.
[30]
BARNES E C, PETERSSON P A. MP2/CBS atomic and molecular benchmarks for H through Ar[J]. The Journal of Chemical Physics, 2010, 132(11): 114111-1-9.
[31]
DUMINDA S R, PETERSSON P A. CCSD(T)/CBS atomic and molecular benchmarks for H through Ar[J]. The Journal of Chemical Physics, 2013, 138(14): 144103-1-12.
[32]
GE Y, GORDON M S, BATTAGLIA F, et al. Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase.1.thermodynamics[J]. Journal of Physical Chemistry A, 2007, 111(8): 1462-1474.
[33]
DENG J L, SU K H, ZENG Y, et al. Investigation of thermodynamic properties of gaseous SiC(X3Π and a1Σ) with accurate model chemistry calculations[J]. Physical A: Statistical Mechanics and Its Applications, 2008, 387(22): 5440-5456.
[34]
YAO X P, SU K H, DENG J L, et al. Gas-phase reaction thermodynamics in preparation of pyrolytic carbon by propylene pyrolysis[J]. Computational Materials Science, 2007, 40(4): 504-524.
[35]
DENG J L, SU K H, YAO X P, et al. Erratum to: ''Gas-phase reaction thermodynamics in preparation of pyrolytic carbon by propylene pyrolysis[J]. Computational Materials Science, 2008, 44(2): 838-840.
[36]
DAVID R L. CRC Handbook of Chemistry and Physics, 77th ed[M]. New York: CRC Press, 1996-1997.
[37]
CHASE M W, DAVIES C A, DOWNEY J R, et al. NIST-JANAF Thermochemical Tables Forth Edition [M]. New York: American Chemical Society and American Institute of Physics, 1998.
[38]
DENG J L, SU K H, WANG X, et al. Thermodynamics of the gas-phase reactions in the chemical vapor deposition of silicon-carbide with methyltrichlorosilane precursor[J]. Theoretical Chemistry Account, 2009, 122(1-2): 1-22.
[39]
DENG J L, SU K H, WANG X, et al. Thermodynamics of the production of condensed phases in the chemical vapor deposition process of methyltrichlorosilane pyrolysis[J]. Chemical Vapor Deposition, 2009, 15(10-15): 281-290.
[40]
ZENG Q F, SU K H, ZHANG L T, et al. Evaluation of the thermodynamic date of CH3SiCl3 based on quantum chemistry calculations[J]. Journal of Physical and Chemical Reference Date, 2006, 35(2): 1385-1390.
[41]
ZENG Y, SU K H, DENG J L, et al. Thermodynamic investigation of the gas-phase reactions in the chemical vapor deposition of boron carbide with BCl3-CH4-H2 precursors[J]. Journal of Molecular Structure Theochem, 2008, 861(1-3): 103-116.
[42]
WANG T, SU K H, DENG J L, et al. Reaction thermodynamic in chemical vapor deposition of boron carbide with BCl3-C3H6-H2 precursors[J]. Journal of Theoretical & Computational Chemistry, 2008, 7(6): 1269-1312.
[43]
邓娟利. CVD/CVI制备自愈合SiC陶瓷基复合材料的反应热力学研究[D]. 西安: 西北工业大学, 2009. DENG Juan-li. Thermodynamics of the reaction in the CVD/CVI preparation of the self-healing SiC ceramic matrix composite materials[D]. Xi'an: Northwestern Polytechnical University, 2009.
[44]
DENG J L, CHENG L F, ZHANG L T, et al. Thermodynamics of the production of condensed phases in the chemical vapor deposition process of zirconium diboride with ZrCl4-BCl3-H2 precursors[J]. Thin Solid Films, 2012, 520(6): 2331-2335.
[45]
DENG J L, CHENG L F, ZHANG L T, et al. Thermodynamic on study co-deposition of ZrB2-SiC from ZrCl4-BCl3-CH3SiCl3-H2 system[J]. Thin Solid Films, 2012, 520(23): 7030-7034.
[46]
DENG J L, CHENG L F, ZHENG G P, et al. Thermodynamics on formation of condensed phases during CVD Si3N4 process with SiCl4-NH3-H2 precursors[J]. Advanced Engineering Materials, 2011, 194-196: 1516-1523.
[47]
XUE J M, YIN X W, YE F, et al. Thermodynamic analysis on the codeposition of SiC-Si3N4 composite ceramics by chemical vapor deposition using SiCl4-NH3-CH4-H2-Ar mixture gases[J]. Journal of the American Ceramic Society,2013,96(3):979-986.
[48]
LIU Q F, ZHANG L T, LIU J, et al. Thermodynamic study on codeposition of ZrC-SiC from MTS-ZrCl4-CH4-H2[J].Inorganic Materials, 2010, 46(10): 1090-1095.
[49]
LIU X F, ZHANG L T, LIU Y S, et al. Thermodynamic calculations on the chemical vapor deposition of Si-C-N from the SiCl4-NH3-C3H6-H2-Ar system[J]. Ceramics International, 2013, 39(4): 3971-3977.
[50]
QU Y N, SU K H, WANG X, et al. Reaction pathways of propene pyrolysis[J]. Journal of Computational Chemistry, 2009, 31(7): 1421-1442.
[51]
赵春年, 成飞来, 张立同, 等. 丙烯化学气相沉积热解碳的动力学研究[J]. 无机材料学报, 2008, 23(6): 1165-1170. ZHAO Chun-nian, CHENG Lai-fei, ZHANG Li-tong, et al. In-suit kinetics study in chemical vapor deposition of pyrocarbon from propylene[J]. Journal of Inorganic Materials, 2008, 23(6): 1165-1170.
[52]
GE Y, GORDON M S, BATTAGLIA F, et al. Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase.2.reaction paths and transition states[J]. Journal of Physical Chemistry A, 2007, 111(8): 1475-1486.
[53]
WANG X, SU K H, DENG J L, et al. Initial decomposition of methyltrichlorosilane in the chemical vapor deposition of silicon-carbide[J]. Computational and Theoretical Chemistry, 2011, 967(2-3): 265-272.
[54]
LIU Y, SU K H, ZENG Q F, et al. Reaction paths of BCl3 + CH4 + H2 in the chemical vapor deposition process[J]. Structural Chemistry, 2012, 23(6): 1677-1692.
[55]
BERJONNEAU J, LANGLAIS F, CHOLLON G, et al. Understanding the CVD process of (Si)-B-C ceramics through FTIR spectroscopy gas phase analysis[J]. Surface and Coatings Technology, 2007, 201(16-17): 7273-7285.
[56]
JIANG X Q, SU K H, WANG X, et al. An investigation of the lowest reaction pathway of propene+BCl3 decomposition in chemical vapor deposition process[J]. Theoretical Chemistry Accounts, 2010, 127(5-6): 519-538.
[57]
LIU Y S, ZHANG L T, CHENG L F, et al. Uniform design and regression analysis of LPCVD boron carbide from BCl3-CH4-H2 system[J]. Applied Surface Science, 2009, 255(11): 5729-5735.
[58]
YANG J H, SU K H, LIU Y, et al. New reaction paths of propene + BCl3 decomposition in chemical vapor deposition process[J]. Journal of Theoretical & Computational Chemistry, 2012, 11(1): 53-85.
[59]
TRUHLAR D G, GARRETT B C. Variational transition state theory[J]. Annual Review of Physical Chemistry, 1984, 35: 159-189.
[60]
GONZALES-LAFONT A, TRUONG T N, TRUHLAR D G. Interpolated variational transition-state theory: practical methods for estimating variational transition-state properties and tunneling contributions to chemical reaction rates from electronic structure calculations[J]. The Journal of Chemical Physics, 1991, 95(12): 8875-8894.
[61]
HAN P P, SU K H, WANG Y L, et al. Reaction rate of propene pyrolysis[J]. Journal of Computational Chemistry, 2011, 32(13): 2745-2755.
[62]
GE Y, GORDON M S, BATTAGLIA F, et al. Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase.3.reaction rate constant calculations[J]. Journal of Physical Chemistry A, 2010, 114(6): 2384-2392.
[63]
刘艳. H2O-SiC(001)及CH4-BCl3-H2反应动力学研究[D]. 西安: 西北工业大学, 2012. LIU Yan. Reaction kinetics of H2O-SiC(001) and CH4-BCl3-H2 decomposition system[D]. Xi'an: Northwestern Polytechnical University, 2012.
[64]
YE F E, ZHANG L T, CHENG L F, et al. Effect of temperature on deposition process of boron doped carbon from BCI3-CH4-H2 by chemical vapor deposition[J]. Materials Review, 2010, 24(7): 108-115.
[65]
XIAO J, SU K H, LIU Y, et al. Decomposition reaction rate of BCl3-C3H6-H2 in gas phase[J]. Journal of Physical Chemistry A, 2012, 116(26): 6955-6966.
[66]
LIU Y S, ZHANG L T, CHENG Y S, et al. Preparation and mechanical properties of carbon fiber reinforced (BCx-SiC)(n) multilayered matrix composites[J]. Applied Composite Materials, 2007, 14(4): 277-286.
[67]
SΦLLING T I, SMITH D M, RADOM L, et al, Towards multireference equivalents of the G2 and G3 methods[J]. Journal of Chemical Physics, 2001, 115(19): 8758-8772.