全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2015 

碳纳米管增强金属基复合材料的研究进展

DOI: 10.11868/j.issn.1001-4381.2015.10.015, PP. 91-101

Keywords: 碳纳米管,金属基复合材料,制备技术,分散性,界面

Full-Text   Cite this paper   Add to My Lib

Abstract:

碳纳米管增强金属基复合材料由于高的比强度、比模量以及优异的热、电性能在航空航天领域具有很好的应用潜力,本文在分析大量文献的基础上,评述该类材料的制备技术和界面研究进展,对其典型性能进行归纳,指出碳纳米管的分散技术以及碳管、基体之间的界面特性应该是今后本领域的重点研究方向。

References

[1]  CARRE?O-MORELLI E, YANG J, COUTEAU E, et al. Carbon nanotube/magnesium composites [J]. physica status solidi (a), 2004, 201 (8): R53-R55.
[2]  WEI H, LI Z Q, XIONG D B, et al. Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design [J]. Scripta Materialia, 2014, 75: 30-33.
[3]  DENG C F, WANG D Z, ZHANG X X, et al. Processing and properties of carbon nanotubes reinforced aluminum composites [J]. Materials Science and Engineering: A, 2007, 444 (1-2): 138-145.
[4]  SO K P, JEONG J C, PARK J G, et al. SiC formation on carbon nanotube surface for improving wettability with aluminum [J]. Composites Science and Technology, 2013, 74: 6-13.
[5]  DONG S R, TU J P, ZHANG X B. An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes [J]. Materials Science and Engineering: A, 2001, 313 (1-2): 83-87.
[6]  CHEN W X, TU J P, GAN H Y, et al. Electroless preparation and tribological properties of Ni-P-Carbon nanotube composite coatings under lubricated condition [J]. Surface and Coatings Technology, 2002, 160 (1): 68-73.
[7]  CHEN W X, TU J P, WANG L Y, et al. Tribological application of carbon nanotubes in a metal-based composite coating and composites [J]. Carbon, 2003, 41 (2): 215-222.
[8]  TU J P, ZHU L P, CHEN W X, et al. Preparation of Ni-CNT composite coatings on aluminum substrate and its friction and wear behavior [J]. Transactions of Nonferrous Metals Society of China, 2004, 14 (5): 880-884.
[9]  ZHOU S M, ZHANG X B, DING Z P, et al. Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique [J]. Composites Part A: Applied Science and Manufacturing, 2007, 38 (2): 301-306.
[10]  KIM I Y, LEE J H, LEE G S, et al. Friction and wear characteristics of the carbon nanotube-aluminum composites with different manufacturing conditions [J]. Wear, 2009, 267 (1-4): 593-598.
[11]  TANG Y B, CONG H T, ZHONG R, et al. Thermal expansion of a composite of single-walled carbon nanotubes and nanocrystalline aluminum [J]. Carbon, 2004, 42 (15): 3260-3262.
[12]  DENG C F, MA Y X, ZHANG P, et al. Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes [J]. Materials Letters, 2008, 62 (15): 2301-2303.
[13]  WU J H, ZHANG H L, ZHANG Y, et al. Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering [J]. Materials & Design, 2012, 41: 344-348.
[14]  CHO S, KIKUCHI K, KAWASAKI A. On the role of amorphous intergranular and interfacial layers in the thermal conductivity of a multi-walled carbon nanotube-copper matrix composite [J]. Acta Materialia, 2012, 60 (2): 726-736.
[15]  AN Z L, TODA M, ONO T. Improved thermal interface property of carbon nanotube Cu composite based on supercritical fluid deposition [J]. Carbon, 2014, 75: 281-288.
[16]  FRANK S, PONCHARAL P, WANG Z L, et al. Carbon nanotube quantum resistors [J]. Science, 1998, 280 (5370): 1744-1746.
[17]  WEI B Q, VAJTAI R, AJAYAN P M. Reliability and current carrying capacity of carbon nanotubes [J]. Applied Physics Letters, 2001, 79 (8): 1172-1174.
[18]  EBBESEN T W, LEZEC H J, HIURA H, et al. Electrical conductivity of individual carbon nanotubes [J]. Nature, 1996, 382: 54-56.
[19]  吴琼, 贾成厂, 聂俊辉. 镀W碳纳米管增强Mg基复合材料的力学和电学性能 [J]. 粉末冶金技术, 2012, 30 (3): 171-176. WU Q, JIA C C, NIE J H. The mechanical and electrical properties of magnesium matrix composites reinforced by tungsten-coated carbon nanotubes [J]. Powder Metallurgy Technology, 2012, 30 (3): 171-176.
[20]  YANG Y L, WANG Y D, REN Y, et al. Single-walled carbon nanotube-reinforced copper composite coatings prepared by electrodeposition under ultrasonic field [J]. Materials Letters, 2008, 62 (1): 47-50.
[21]  ZHOU X, SHIN E, WANG K W, et al. Interfacial damping characteristics of carbon nanotube-based composites [J]. Composites Science and Technology, 2004, 64 (15): 2425-2437.
[22]  尹志新, 王庆慧, 覃桂萍, 等. 多壁碳纳米管/氧化铝混杂增强铝基复合材料的阻尼特性研究 [J]. 材料导报, 2010, 24 (增刊2): 174-176. YIN Z X, WANG Q H, TAN G P, et al. Study of properties of aluminum composites with multi-walled carbon nanotube and alumina [J]. Materials Review, 2010, 24 (Suppl 2): 174-176.
[23]  DENG C F, WANG D Z, ZHANG X X, et al. Damping characteristics of carbon nanotube reinforced aluminum composite [J]. Materials Letters, 2007, 61 (14-15): 3229-3231.
[24]  杨春巍, 胡信国, 张亮, 等. 多壁碳纳米管的超声处理对PtRu/MWCNTs电催化性能的影响 [J]. 材料工程, 2008, (7): 79-82, 87. YANG C W, HU X G, ZHANG L, et al. Study of functionalization on multi-wall carbon nanotubes by ultrasound [J]. Journal of Materials Engineering, 2008, (7): 79-82, 87.
[25]  POPOV V N. Carbon nanotubes: properties and application [J]. Materials Science and Engineering R: Reports, 2004, 43 (3): 61-102.
[26]  SALVETAT-DELMOTTE J P, RUBIO A. Mechanical properties of carbon nanotubes: a fiber digest for beginners [J]. Carbon, 2002, 40 (10): 1729-1734.
[27]  XIE X L, MAI Y W, ZHOU X P. Dispersion and alignment of carbon nanotubes in polymer matrix: a review [J]. Materials Science and Engineering R: Reports, 2005, 49 (4): 89-112.
[28]  LAURENT C, FLAHAUT E, PEIGNEY A. The weight and density of carbon nanotubes versus the number of walls and diameter [J]. Carbon, 2010, 48 (10): 2994-2996.
[29]  JIANG H, LIU B, HUANG Y, et al. Thermal expansion of single wall carbon nanotubes [J]. Journal of Engineering Materials and Technology, 2004, 126 (3): 265-270.
[30]  BAKSHI S R, LAHIRI D, AGARWAL A. Carbon nanotube reinforced metal matrix composites-a review [J]. International Materials Reviews, 2010, 55 (1): 41-64.
[31]  KUZUMAKI T, MIYAZAWA K, ICHINOSE H, et al. Processing of carbon nanotube reinforced aluminum composite [J]. Jounarl of Material Research, 1998, 13 (9): 2445-2449.
[32]  ZHONG R, CONG H T, HOU P X. Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes [J]. Carbon, 2003, 41 (4): 848-851.
[33]  LIAO J Z, TAN M J, SRIDHAR I. Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites [J]. Materials & Design, 2010, 31(Suppl 1):96-100.
[34]  张云鹤, 李庚, 苗孟河, 等. 粉末冶金法碳纳米管增强镁基复合材料的微观组织及力学性能 [J]. 复合材料学报, 2013, 30 (增刊1): 102-106. ZHANG Y H, LI G, MIAO M H, et al. Microstructure and mechanical properties of carbon nanotube reinforced magnesium matrix composties by powder metallurgy [J]. Acta Materiae Compositae Sinica, 2013, 30 (Suppl 1): 102-106.
[35]  KONDOH K, FUKUDA H, UMEDA J, et al. Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites [J]. Materials Science and Engineering: A, 2010, 527 (16-17): 4103-4108.
[36]  KONDOH K, THRERUJIRAPAPONG T, IMAI H, et al. Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes [J]. Composites Science and Technology, 2009, 69 (7): 1077-1081.
[37]  SOTOUDEHNIA M M, PA L A. Dispersion of carbon nanotubes in iron by wet processing for the preparation of iron-carbon nanotube composites [J]. Powder Technology, 2014, 258: 1-5.
[38]  ESAWI A M K, EL BORADY M A. Carbon nanotube-reinforced aluminium strips [J]. Composites Science and Technology, 2008, 68 (2): 486-492.
[39]  许世娇, 肖伯律, 刘振宇, 等. 高能球磨法制备的碳纳米管增强铝基复合材料的微观组织和力学性能 [J]. 金属学报, 2012,48 (7): 882-888. XU S J, XIAO B L, LIU Z Y, et al. Microstructure and mechanical properties of CNT/Al composties fabricated by high energy ball-miling method [J]. Acta Metallurgica Sinica, 2012, 48 (7): 882-888.
[40]  CHOI H J, KWON G B, LEE G Y, et al. Reinforcement with carbon nanotubes in aluminum matrix composites [J]. Scripta Materialia, 2008, 59 (3): 360-363.
[41]  聂俊辉, 张亚丰, 史娜, 等. 镀钨碳纳米管增强铜基复合材料的制备及性能 [J]. 北京科技大学学报, 2012, 34 (7): 823-829. NIE J H, ZHANG Y F, SHI N, et al. Fabrication and properties of Cu matrix composites reinforced by tungsten-coated carbon nanotubes [J]. Journal of University of Science and Technology Beijing, 2012, 34 (7): 823-829.
[42]  SINGHAL S K, PASRICHA R, TEOTIA S, et al. Fabrication and characterization of Al-matrix composites reinforced with amino-functionalized carbon nanotubes [J]. Composites Science and Technology, 2011, 72 (1): 103-111.
[43]  SINGHAL S K, PASRICHA R, JANGRA M, et al. Carbon nanotubes: amino functionalization and its application in the fabrication of Al-matrix composites [J]. Powder Technology, 2012, 215-216: 254-263.
[44]  MAQBOOL A, HUSSAIN M A, KHALID F A, et al. Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites [J]. Materials Characterization, 2013, 86: 39-48.
[45]  HE C N, ZHAO N Q, SHI C S, et al. An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing peinforced Al-matrix composites [J]. Advanced Materials, 2007, 19 (8): 1128-1132.
[46]  李海鹏. 碳纳米管在铝基体上原位合成及其复合材料的组织与性能 [D]. 天津: 天津大学, 2008. LI H P. Synthesis in-situ of carbon nanotubes over Al matrix and the structure and property of their composite [D]. Tianjin: Tianjin University, 2008.
[47]  YANG X D, LIU E Z, SHI C S, et al. Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility [J]. Journal of Alloys and Compounds, 2013, 563: 216-220.
[48]  LI H P, FAN J W, GENG X X, et al. Alumina powder assisted carbon nanotubes reinforced Mg matrix composites [J]. Materials & Design, 2014, 60: 637-642.
[49]  LI Q Q, VIERECKL A, ROTTMAIR C A, et al. Improved processing of carbon nanotube/magnesium alloy composites [J]. Composites Science and Technology, 2009, 69 (7-8): 1193-1199.
[50]  LI Q Q, ROTTMAIR C A, SINGER R F. CNT reinforced light metal composites produced by melt stirring and by high pressure die casting [J]. Composites Science and Technology, 2010, 70 (16): 2242-2247.
[51]  LIU S Y, GAO F P, ZHANG Q Y, et al. Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing [J]. Transactions of Nonferrous Metals Society of China, 2010, 20 (7): 1222-1227.
[52]  ZENG X S, ZHOU G H, XU Q, et al. A new technique for dispersion of carbon nanotube in a metal melt [J]. Materials Science and Engineering: A, 2010, 527 (20): 5335-5340.
[53]  LI C D, WANG X J, LIU W Q, et al. Effect of solidification on microstructures and mechanical properties of carbon nanotubes reinforced magnesium matrix composite [J]. Materials & Design, 2014, 58: 204-208.
[54]  UOZUMI H, KOBAYASHI K, NAKANISHI K, et al. Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting [J]. Materials Science and Engineering: A, 2008, 495 (1-2): 282-287.
[55]  周胜名. 碳纳米管增强铝基复合材料的无压渗透法制备及性能研究 [D]. 杭州: 浙江大学, 2009. ZHOU S M. Fabrication and properties of carbon nanotubes reinforced aluminum matrix composites by pressureless infiltration technology [D]. Hanzhou: Zhejiang University, 2009.
[56]  AN B G, LI L X, LI H X. Electrodeposition in the Ni-plating bath containing multi-walled carbon nanotubes [J]. Materials Chemistry and Physics, 2008, 110 (2-3): 481-485.
[57]  陈小华, 王健雄, 邓福铭, 等. 碳纳米管的化学镀镍研究 [J]. 新型炭材料, 2000, 15 (4): 39-43. CHEN X H, WANG J X, DENG F M, et al. Electroless plating of carbon nanotube with nickel [J]. New Carbon Materials, 2000, 15 (4): 39-43.
[58]  CHEN X H, XIA J T, PENG J C, et al. Carbon-nanotube metal-matrix composites prepared by electroless plating [J]. Composites Science and Technology, 2000, 60 (2): 301-306.
[59]  WANG F, ARAI S, ENDO M. Metallization of multi-walled carbon nanotubes with copper by an electroless deposition process [J]. Electrochemistry Communications, 2004, 6 (10): 1042-1044.
[60]  LAHA T, AGARWAL A, MCKECHNIE T, et al. Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite [J]. Materials Science and Engineering: A, 2004, 381 (1-2): 249-258.
[61]  BAKSHI S R, SINGH V, SEAL S, et al. Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders [J]. Surface and Coatings Technology, 2009, 203 (10-11): 1544-1554.
[62]  BAKSHI S R, SINGH V, BALANI K, et al. Carbon nanotube reinforced aluminum composite coating via cold spraying [J]. Surface and Coatings Technology, 2008, 202 (21): 5162-5169.
[63]  CHA S I, KIM K T, ARSHAD S N, et al. Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing [J]. Advanced Materials, 2005, 17 (11): 1377-1381.
[64]  NAM D H, KIM Y K, CHA S I, et al. Effect of CNTs on precipitation hardening behavior of CNT/Al-Cu composites [J]. Carbon, 2012, 50 (13): 4809-4814.
[65]  NOGUCHI T, MAGARIO A, FUKAZAWA S, et al. Carbon nanotube/aluminium composites with uniform dispersion [J]. Materials Transactions, 2004, 45 (2): 602-604.
[66]  YUUKI J, KWON H, KAWASAKI A, et al. Fabrication of carbon nanotube reinforced aluminum composite by powder extrusion process [J]. Materials Science Forum, 2007,534-536: 889-892.
[67]  KWON H, ESTILI M, TAKAGI K, et al. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites [J]. Carbon, 2009, 47 (3): 570-577.
[68]  KWON H, KAWASAKI A. Extrusion of spark plasma sintered aluminum-carbon nanotube composites at various sintering temperatures [J]. Journal of Nanoscience and Nanotechnology, 2009, 9 (11): 6542-6548.
[69]  LIU Q, KE L M, LIU F C, et al. Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing [J]. Materials & Design, 2013, 45: 343-348.
[70]  MORISADA Y, FUJII H, NAGAOKA T, et al. MWCNTs/AZ31 surface composites fabricated by friction stir processing [J]. Materials Science and Engineering: A, 2006, 419 (1): 344-348.
[71]  LIU Z Y, XIAO B L, WANG W G, et al. Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing [J]. Carbon, 2012, 50 (5): 1843-1852.
[72]  IZADI H, GERLICH A P. Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites [J]. Carbon, 2012, 50 (12): 4744-4749.
[73]  李文龙, 夏春, 邢丽, 等. 搅拌针形状对搅拌摩擦加工制备CNTs/铝基复合材料均匀性的影响 [J]. 材料工程, 2014, (1): 75-78, 84. LI W L, XIA C, XING L, et al. Influence of pin shape on homogeneity of CNTs distribution in CNTs/Al composite fabricated by friction stir process [J]. Journal of Materials Engineering, 2014, (1): 75-78, 84.
[74]  GEORGE R, KASHYAP K T, RAHUL R, et al. Strengthening in carbon nanotube/aluminium (CNT/Al) composites [J]. Scripta Materialia, 2005, 53 (10): 1159-1163.
[75]  XU C L, WEI B Q, MA R Z, et al. Fabrication of aluminum-carbon nanotube composites and their electrical properties [J]. Carbon, 1999, 37 (5): 855-858.
[76]  CI L J, RYU Z, JIN-PHILLIPP N Y, et al. Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum [J]. Acta Materialia, 2006, 54 (20): 5367-5375.
[77]  ESAWI A M K, MORSI K, SAYED A, et al. The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42 (3): 234-243.
[78]  LI H P, KANG J L, HE C N, et al. Mechanical properties and interfacial analysis of aluminum matrix composites reinforced by carbon nanotubes with diverse structures [J]. Materials Science and Engineering: A, 2013, 577: 120-124.
[79]  BAKSHI S R, KESHRI A K, SINGH V, et al. Interface in carbon nanotube reinforced aluminum silicon composites: Thermodynamic analysis and experimental verification [J]. Journal of Alloys and Compounds, 2009, 481 (1-2): 207-213.
[80]  SONG H Y, ZHA X W. Influence of nickel coating on the interfacial bonding characteristics of carbon nanotube-aluminum composites [J]. Computational Materials Science, 2010, 49 (4): 899-903.
[81]  FUKUDA H, KONDOH K, UMEDA J, et al. Interfacial analysis between Mg matrix and carbon nanotubes in Mg-6wt.% Al alloy matrix composites reinforced with carbon nanotubes [J]. Composites Science and Technology, 2011, 71 (5): 705-709.
[82]  NAI M H, WEI J, GUPTA M. Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites [J]. Materials & Design, 2014, 60: 490-495.
[83]  KUZUMAKI T, UJIIE O, ICHINOSE H, et al. Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite [J]. Adv Eng Mater, 2000, 2 (7): 416-418.
[84]  NAM D H, CHA S I, LIM B K, et al. Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al-Cu composites [J]. Carbon, 2012, 50 (7): 2417-2423.
[85]  YOO S J, HAN S H, KIM W J. Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes [J]. Scripta Materialia, 2013, 68 (9): 711-714.
[86]  CHOI H J, MIN B H, SHIN J H, et al. Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nanotubes [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42 (10): 1438-1444.
[87]  冒丽, 吴华强, 张宁, 等. 微波法制备组成可控Cu(1-x)Nix/MWCNTs复合材料及其磁性能 [J]. 材料工程, 2013, (10): 93-97. MAO L, WU H Q, ZHANG N, et al. Microwave-assisted synthesis and magnetic properties of composition-controlled Cu(1-x)Nix/MWCNTs nanocomposites [J]. Journal of Materials Engineering, 2013, (10): 93-97.
[88]  YUAN J G, ZHU Y F, LI Y, et al. Effect of multi-wall carbon nanotubes supported palladium addition on hydrogen storage properties of magnesium hydride [J]. International Journal of Hydrogen Energy, 2014, 39 (19): 10184-10194.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133