BEWLAY P B, JACKSON R M, ZHAO J C, et a1. Ultrahigh temperature Nb-silicide-based composites [J]. MRS Bulletin, 2003, 28(9): 646-653.
[2]
JACKSON R M, BEWLAY P B, ROWE G R, et a1. High-temperature refractory metal-intermetallic composites [J]. Journal of Metals, 1996, 48(1): 39-44.
[3]
沙江波. Nb-Si基超高温合金研究进展 [J]. 航空制造技术, 2010, (14): 58-61. SHA Jiang-bo. Research progress of Nb-Si ultra high temperature alloy [J]. Aeronautical Manufacturing Technology, 2010, (14): 58-61.
[4]
BEWLAY P B, JACKSON R M, SUBRAMANIAN R P, et al. A review of very-high temperature Nb-silicide-based composites [J]. Metallurgical and Materials Transactions A, 2003, 34(10): 2043-2052.
[5]
张永刚, 韩雅芳, 陈国良, 等. 金属间化合物结构材料[M]. 北京: 国防工业出版社, 2001.21-23. ZHANG Yong-gang, HAN Ya-fang, CHEN Guo-liang, et al. Intermetallic Compound Structure Material [M]. Beijing: National Defense Industry Press, 2001.21-23.
[6]
黄光宏,申造宇,牟仁德,等. Nb/Nb5Si3 微叠层复合材料制备与其组织结构[J]. 航空材料学报,2014,34(6):47-53. HUANG Guang-hong, SHEN Zao-yu, MU Ren-de, et al. Preparation and microstructure of Nb/Nb5Si3 microlaminated composites [J]. Journal of Aeronautical Materials, 2014,34(6):47-53.
[7]
DAVIDSON L D, MAZIASZ J P, JONES W J. Dislocation structures in a deformed Nb-Cr-Ti solid solution alloy [J]. Metallurgical and Materials Transactions A, 2001, 32 (4): 1023-1027.
[8]
LIU W, SHA J B. Effect of Nb and Nb5Si3 powder size on microstructure and fracture behavior of an Nb-16Si alloy fabricated by spark plasma sintering [J]. Metallurgical and Materials Transactions A, 2014, 45(10): 4316-4323.
[9]
康永旺, 曲士昱, 宋尽霞, 等. V, Al对Nb-Si系超高温结构材料抗氧化性能的影响[J].航空材料学报,2008,28(5):6-10. KANG Yong-wang, QU Shi-yu,SONG Jin-xia, et al. Effect of V and Al on oxidation resistance of Nb-Si based ultra high temperature structural materials [J]. Journal of Aeronautical Materials, 2008,28(5):6-10.
[10]
MENDIRATTA G M, LEWANDOWKSI J J, DIMIDUK M D. Strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloy [J]. Metallurgical Transactions A, 1991, 22(7): 1573-1583.
[11]
BEWLAY P B, JACKSON R M, LIPSITT H A. The balance of mechanical and environmental properties of a multi-element niobium-niobium silicide-based in situ composite [J]. Metallurgical and Materials Transactions A, 1996, 27(12): 3801-3808.
[12]
CHAN S K, DAVIDSION L D. Effects of Ti addition on cleavage fracture in Nb-Cr-Ti solid-solution alloys [J]. Metallurgical and Materials Transactions A, 1999, 30(4): 925-939.
[13]
GENG J, TSAKIROPOULOS P, SHAO G S. A study of the effect of Hf and Sn addition on the microstructure of NbSS/Nb5Si3 based in situ composites [J]. Intermetallics, 2007, 15(1): 69-76.
[14]
SHA J B, HIRAI H, UENO H, et al. Mechanical properties of as-cast and directionally solidified Nb-Mo-W-Ti-Si in-situ composites at high temperatures [J]. Metallurgical and Materials Transactions A, 2003, 34(1): 85-94
[15]
GUAN P, GUO X P, DING X, et al. Directionally solidified microstructure of an ultra-high temperature Nb-Si-Ti-Hf-Cr-Al alloy [J]. Acta Metallurgies Sinica, 2004, 17(4): 450-454.
[16]
MURAKAMI T, SASAKI S, ICHIKAWA K, et al. Oxidation resistance of powder compacts of the Nb-Si-Cr system and Nb3Si5Al2 matrix compacts prepared by spark plasma sintering [J]. Intermetallics, 2001, 9(7): 629-635.
[17]
MURAYAMA Y, HANADA S. High temperature strength fracture toughness and oxidation resistance of Nb-Si-Al-Ti multiphase alloys [J]. Science and Technology of Advanced Materials, 2002, 3(2): 145-156.
[18]
JACKSON R M, BEWLAY P B, ROWE G R, et a1. High-temperature refractory metal-intermetallic composites [J]. Journal of Metals, 1996, 48(1): 39-44.
[19]
DAVIDSON L D, CHAN K S. The effect of microstructure on the fracture resistance of Nb-Cr-Ti in situ composites [J]. Scripta Materialia, 1998, 38(7): 1155-1161.
[20]
MENDIRATTA G M, DIMIDUK M D. Phase relations and transformation kinetics in the high Nb region of the Nb-Si system [J]. Scripta Metallurgica et Materialia, 1991, 25(1): 237-242.
[21]
KAJUCH J, RIGNEY D J, LEWANDOWSKI J J. Processing and properties of Nb5Si3 and tough Nb5Si3/Nb laminates [J]. Materials Science and Engineering:A, 1992, 155(1-2): 59-65.
[22]
YU J, ZHANG K F. Tensile properties of multiphase refractory Nb-16Si-2Fe in situ composite [J]. Scripta Materialia, 2008, 59(7): 714-717.
[23]
MA L M, YUAN S N, CUI R J, et al. Interactions between Nb-silicide based alloy and yttria mould during directional solidification [J]. International Journal of Refractory Metals and Hard Materials, 2012, 30(1): 96-101.
[24]
杨春艳, 陈颖, 沙江波. Cr对Nb-16Si-22Ti-2Al-2Hf 合金显微组织与高低温力学性能的影响[J]. 航空学报, 2010, (9): 1892-1899. YANG Chun-yan, CHEN Ying, SHA Jiang-bo. The influence of Cr for high and low temperature mechanical properties of Nb-16Si-22Ti-2Al-2Hf alloys [J]. Journal of aviation, 2010, (9): 1892-1899.
[25]
BEWLAY P B, JACKSON R M, LIPSITT A H. The balance of mechanical and environmental properties of a multi-element niobium-niobium silicide-based in situ composite [J]. Metallurgical and Materials Transactions A, 1996, 27(12): 3801-3808.
[26]
陈颖. 热加工工艺对Nb-Si-Ti-Al-Cr-Hf系超高温合金组织与性能的影响[D]. 北京: 北京航空航天大学, 2008. CHEN Ying. The influence of hot working technology on the microstructure and properties of Nb-Si-Ti-Al-Cr-Hf high temperature alloy [D]. Beijing: Beihang University, 2008.
[27]
SHA J, YANG C, LIU J. Toughening and strengthening behavior of an Nb-8Si-20Ti-6Hf alloy with addition of Cr [J]. Scripta Materialia, 2010, 62(11): 859-862.
[28]
ZHANG P, GUO X P. A comparative study of two kinds of Y and Al modified silicide coatings on an Nb-Ti-Si based alloy prepared by pack cementation technique [J]. Corrosion Science, 2011, 53(12): 4291-4299