全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2015 

纯钛基体长效超疏水表面的低成本制备

DOI: 10.11868/j.issn.1001-4381.2015.11.003, PP. 13-18

Keywords: ,阳极氧化,超疏水,氟碳罩光漆

Full-Text   Cite this paper   Add to My Lib

Abstract:

为降低钛基上超疏水表面的制备成本,提高超疏水表面的耐久性能,以喷砂-阳极氧化法在纯钛基体上构造微纳复合粗糙结构,并使用商用氟碳罩光漆直接对其进行修饰获得超疏水性表面。利用傅里叶变换红外光谱(FTIR),场发射扫描电子显微镜(FE-SEM)和接触角测试等技术对超疏水性表面的化学组成、表面形貌、润湿性和表面耐久性进行了研究。结果表明喷砂处理在钛基表面构筑微米级凹坑,阳极氧化通过形成网状氧化膜在钛基表面构造纳米级结构,氟碳罩光漆修饰该微纳复合粗糙表面后,为表面引入大量含氟基团,使其获得超疏水性能。超疏水性表面与纯水的静态接触角达162°±2.3°,滚动角为2.1°±0.2°,具有优异的环境耐久性。

References

[1]  RAHMAWAN Y, XU L, YANG S. Self-assembly of nanostructures towards transparent, superhydrophobic surfaces[J]. Journal of Materials Chemistry A, 2013, 1(9):2955-2969.
[2]  蔡锡松, 肖新颜. 超疏水表面涂层研究进展[J]. 现代化工, 2013, 33(1):22-25, 27. CAI Xi-song, XIAO Xin-yan.Progress in superhydrophobic surfaces coatings[J]. Modern Chemical Industry, 2013, 33(1):22-25, 27.
[3]  江雷, 冯琳. 仿生智能纳米界面材料[M]. 北京:化学工业出版社, 2007.
[4]  徐文骥, 宋金龙, 孙晶, 等. 金属基体超疏水表面制备及应用的研究进展[J]. 材料工程, 2011,(5):93-98. XU Wen-ji, SONG Jin-long, SUN Jing, et al.Progress in fabrication and application of superhydrophobic surfaces on metal substrates[J]. Journal of Materials Engineering, 2011,(5):93-98.
[5]  ZHENG Y M, BAI H, JIANG L, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(8729):640-643.
[6]  BHUSHAN B, JUNG Y C. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction[J]. Progress in Materials Science, 2011, 56(1):1-108.
[7]  刘圣, 耿兴国, 周晓峰, 等. 铝及铝合金表面超疏水协和涂层的制备与性能研究[J]. 中国表面工程, 2008, 21(3):30-34. LIU Sheng, GENG Xing-guo, ZHOU Xiao-feng, et al. Preparation and properties of super-hydrophobic synergistic coating on aluminum and its alloys[J]. China Surface Engineering, 2008, 21(3):30-34.
[8]  ZHANG X, LIANG J, LIU B, et al. Preparation of superhydrophobic zinc coating for corrosion protection[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 454:113-118.
[9]  QI Y, CUI Z, LIANG B, et al. A fast method to fabricate superhydrophobic surfaces on zinc substrate with ion assisted chemical etching[J]. Applied Surface Science, 2014, 305:716-724.
[10]  WANG S, FENG L, JIANG L. One-step solution-immersion process for the fabrication of stable bionic superhydrophobic surfaces[J]. Advanced Materials, 2006, 18(6):767-770.
[11]  WANG T, CHANG L, ZHUANG L, et al. A hierarchical and superhydrophobic ZnO/C surface derived from a rice-leaf template[J]. Monatshefte für Chemie-Chemical Monthly, 2014, 145(1):65-69.
[12]  周思斯, 管自生, 李强, 等. Zn片经水热反应和氟硅烷修饰构建超疏水ZnO表面[J]. 物理化学学报, 2009, 25(8):1593-1598. ZHOU Si-si, GUAN Zi-sheng, LI Qiang, et al. Fabrication of superhydrophobic ZnO surfaces via Zn foil hydrothermal reactions and fluoroalkylsilane modified process[J]. Acta Physico-Chimica Sinica, 2009, 25(8):1593-1598.
[13]  SONG X, ZHAI J, WANG Y, et al. Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties[J]. The Journal of Physical Chemistry:B, 2005, 109(9):4048-4052.
[14]  NAYAK B K, CAFFREY P O, SPECK C R, et al. Superhydrophobic surfaces by replication of micro/nano-structures fabricated by ultrafast-laser-microtexturing[J]. Applied Surface Science, 2013, 266:27-32.
[15]  STEELE A, NAYAK B K, DAVIS A, et al. Linear abrasion of a titanium superhydrophobic surface prepared by ultrafast laser microtexturing[J]. Journal of Micromechanics and Microengineering, 2013, 23(11):115012.
[16]  GUO M, KANG Z, LI W, et al. A facile approach to fabricate a stable superhydrophobic film with switchable water adhesion on titanium surface[J]. Surface and Coatings Technology, 2014, 239:227-232.
[17]  BARTHWAL S, KIM Y S, LIM S H. Fabrication of amphiphobic surface by using titanium anodization for large-area three-dimensional substrates[J]. Journal of Colloid and Interface Science, 2013, 400:123-129.
[18]  FLEMING R A, ZOU M. Silica nanoparticle-based films on titanium substrates with long-term superhydrophilic and superhydrophobic stability[J]. Applied Surface Science, 2013, 280:820-827.
[19]  SALEEMA N, SARKAR D K, GALLANT D, et al. Chemical nature of superhydrophobic aluminum alloy surfaces produced via a one-step process using fluoroalkyl-silane in a base medium[J]. ACS Applied Materials and Interfaces, 2011, 3(12):4775-4781.
[20]  ISHIZAKI T, MASUDA Y, SAKAMOTO M. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution[J]. Langmuir, 2011, 27(8):4780-4788.
[21]  SARKAR D K, FARZANEH M, PAYNTER R W. Superhydrophobic properties of ultrathin rf-sputtered Teflon films coated etched aluminum surfaces[J]. Materials Letters, 2008, 62(8-9):1226-1229.
[22]  MARMUR A. Solid-surface characterization by wetting[J]. Annual Review of Materials Research, 2009, 39:473-489.
[23]  QUéRé. Wetting and roughness[J]. Annual Review of Materials Research, 2008, 38:71-99.
[24]  WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry Research, 1936, 28(8):988-994.
[25]  CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Journal of the Chemical Society, 1944, 40:546-551.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133