MILLER R M,BIELER T R,SEMIATIN S L.Flow softening during hot working of Ti-6Al-4V with a lamellar colony microstructure[J].Scripta Mater,1999,40 (12):1387-1393.
[2]
SEMIATIN S L,SEETHARAMAN V,WEISS I.Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure[J].Mater Sci Eng,1999,A263:257-271.
[3]
SEMIATIN S L,BIELER T R.The effect of alpha platelet thickness on plastic flow during hot working of Ti-6Al-4V with a transformed microstructure[J].Acta Mater,2001,49:3565-3573.
[4]
SEMIATIN S L,SOPER J C,SUKONNIK I M.Short-time beta grain growth kinetics for a conventional titanium alloy[J].Acta Mater,1996,44 (5):1979-1986.
[5]
IVASISHIN O M,SEMIATIN S L,MARKOVSKY P E,et al.Grain growth and texture evolution in Ti-6Al-4V during beta annealing under continuous heating conditions[J].Mater Sci Eng,2002,A337:88-96.
[6]
IVASISHIN O M,SHEVCHENKO S V,SEMIATIN S L.Effect of crystallographic texture on the lsothermal beta grain growth kinetics of Ti-6Al-4V[J].Mater Sci Eng,2002,A332:343-350.
[7]
DING R,GUO Z X.Microstructural modeling of dynamic recrystallization using an extended cellular approach[J].Computational Mater Sci,2002,23:209-218.
[8]
FUJII H.Strengthening of α+β titanium alloys by thermo-mechanical processing[J].Mater Sci and Eng,1998,A243:103-108.
[9]
L(U)TJERING G.Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys[J].Mater Sci Eng,1998,A243:32-45.
[10]
PRASAD Y V R K,SESHACHARYULU T.Processing maps for hot working of titanium alloy[J].Mater Sci Eng,1998,A243:82-88.
[11]
JEOUNG H K,SEMIATIN S T,CHONG S L.Constitutive analysis of the high-temperature deformation of Ti-6Al-4V with a transformed microstructure[J].Acta Mater,2003,51:5613 -5626.
LI M Q,XIONG A M,HUANG W C,et al.Microstructure evolution and modeling of the hot compression of a TC6 titanium alloy[J].Material Characterization,2003,49:203-209.
АНОШКИН Н Ф,ЕРМАНОК М З.ПолуфабрикатыизТитановыхСплавов[М].Москва:ОНТИВИЛС,1996.11-36.
[19]
BRUN M,ANOSHKIN N,SHAKHANOVA G.Physical processes and regimes of thermo-mechanical processing controlling development of regulated structure in the α+β titanium alloys[J].Mater Sci Eng,1998,A243:77-81.
[20]
WEISS I,SEMIATIN S L.Thermo-mechanical processing of al pha titanium alloys-an overview[J].Mater Sci Eng,1999,A263:243-256.
[21]
WEISS I,SEMIATIN S L.Thermo-mechanical processing of beta titanium alloys-an overview[J].Mater Sci Eng,1998,A243:46-65.
[22]
SESHACHARYULU T,MEDEIROS S C,MORGAN J T,et al.Hot deformation mechanisms in ELI grade Ti-6Al-4V[J].Scripta Mater,1999,41 (3):283-288.
[23]
SESHACHARYULU T,MEDEIROS S C,MORGAN J T,et al.Hot deformation and micro structural damage mechanisms in extra-low interstitial (ELI) grade Ti-6Al-4V[J].Mater Sci Eng,2000,A279:289-299.
[24]
SESHACHARYULU T,MEDEIROS S C,FRAZIER W G,et al.Hot working of commercial Ti-6Al-4V with an equiaxed α-β microstructure:materials modeling consideration[J].Mate Sci Eng,2000,A284:184-194.
[25]
PRASAD Y V R K,SESHACHARYULU T,MEDEIROS S C,et al.Influence of oxygen content on the forging response of equiaxed (α+β) preform of Ti-6Al-4V:commercial vs ELI grade[J].J Mat Proc Tech,2001,108:320-327.
[26]
SESHACHARYULU T,MEDEIROS S C,FRAZIER W G,et al.Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure[J].MaterSci Eng,2002,A325:112-125.
[27]
DING R,GUO Z X,WILSON A.Microstructure evolution of a Ti-6Al-4V alloy during thermo-mechanical processing[J].Mater Sci Eng,2002,A327:233-245.
[28]
DING R,GUO Z X.Microstructure evolution of a Ti-6Al-4V alloy during β-phase processing:experimental and simulative investigations[J].Mater Sci Eng,2004,A365:172-179.