全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2009 

锰元素对TWIP钢层错能和变形机制的影响

, PP. 39-42

Keywords: 层错能,TWIP钢,锰含量,变形机制

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据层错能的热力学模型,计算了Fe-XMn-3Si-3Al系高强度高塑性TWIP钢的层错能.计算结果表明,随锰含量增加Fe-XMn-3Si-3Al系TWIP钢层错能增加,在此基础上讨论了锰含量对Fe-XMn-3Si-3Al系TWIP钢变形机制、力学性能和微观组织的影响.在合金中Mn含量的提高使层错能增加,而层错能的增加使Fe-XMn-3Si-3Al系钢表现出不同的变形机制,即逐渐由TRIP效应变为TWIP效应;同时随着Mn含量的提高,合金的抗拉强度降低,而塑性提高.

References

[1]  唐荻,米振莉,陈雨来.国外新型汽车用钢技术要求及研究开发现状[J].钢铁,2005,40(6):1-5.
[2]  MI Z L,TANG D,YAN L,et al.High-strength and high-plasticity TWIP steel for modern vehicle[J].Material Science and Technology,2005,4(21):451-454.
[3]  OLSON G B,COHEN M.A general mechanism of matensitic nucleation:Part 1.general concepts and the FCC HCP transformation[J].Metal Trans,1976,7A:1897-1904.
[4]  ADLER P H,OLSON G B,OWEN W S.Strain hardening of Hadfield manganese steel[J].Metall Trans,1986,17A:1725-1737.
[5]  ERICSSON T.On the Suzuki effect and spinodal decomposition[J].Acta Metall,1966,14:1073-1084.
[6]  HIRTH J P.Thermodynamics of stacking fault[J].Metall Trans,1970,1:2367-2374
[7]  STEPAKOFF G L,KAUFMAN L.Thermodynamic properties of H.C.P iron and iron-ruthenium alloys[J].Acta Metall,1968,16:13-22.
[8]  BREEDIS J F,KAUFMAN L.Formation of hcp and bcc phase in austenitic iron alloys[J].Metall Trans,1971,2:2359-2371.
[9]  ISHIDA K,NISHIZAWA T.Effect of alloy element on stability of epsilon iron[J].Trans JIM,1974,15:225-236.
[10]  KATO T,FUKAI S,FUJIKARA M,et al.Structure stability and mechanical properties of Fe-Mn-Cr alloys[J].Transactions ISIJ,1976,16:673-679.
[11]  TIAN X.Effect of silicon content on the stacking fault energy in Fe-Mn-Si alloys[J].Materials Science Progress,1993,7(3):215-218.
[12]  YANG W S,WAN C M.The influence of aluminium content to the stacking fault energy in Fe-Mn-Al-C alloy system[J].Journal of Materials Science,1990,25:1821-1823.
[13]  ALLAIN S,CHATEAU J P,BOUAZIZ,et al.Correlation between the calculation stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys[J].Material Science and Engineering A,2004,(387-389):158-162.
[14]  DINSDAL A T.SGTE data for pure elements[J].CALPHAD,1991,15:317-425.
[15]  TIAN X,ZHANG Y S.Effect of aluminium,chromium and silicon on the lattice parameter for Fe-Mn-C austenite[J].Materials Science Progress,1991,5(2):48-51.
[16]  VOLOSEVICH PY,GRINDNEV V N,PETROV Y N.Manganese influence on stacking-fault energy in iron-manganese alloys[J].Phys Met Metall,1976,42(2):126-130.
[17]  LEE Y K,CHOI C S.Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe-Mn binary system[J].Metall Mater Trans A,2000,31:355-360.
[18]  PETROV Y N,YAKUBTSOV I A.Thermodynamic calculation of stacking fault energy for multicomponent alloys with f c c lattice based on iron[J].Phys Met Metall,1986,62(2):34-38.
[19]  GRASSEL O,KRUGER L,FROMMEYER G,et al.High strength Fe-Mn-(Al,Si) TRIP/TWIP steels development-properties-application[J].International Journal of Plasticity,2000,16:1391-1409.
[20]  WANJF,CHEN S P,XU Z Y.Thermodynamical calculation of the stacking fault energy in Fe-30Mn-6Si-xN shape memory alloys[J].Acta Metallurgyca Sinica,2000,36(7):679-683.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133