全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2013 

基于应力波因子的金属材料表面塑性损伤检测

DOI: 10.3969/j.issn.1001-4381.2013.11.012, PP. 70-74

Keywords: 表面塑性损伤,应力波因子,非线性超声,非线性系数

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了一种基于应力波因子的金属材料表面塑性损伤检测方法。将AZ31镁铝合金试件加载到不同的拉伸载荷后,利用RitecSNAP非线性超声测试系统激发和接收Rayleigh表面波,通过实验测试在不同载荷作用后基于应力波因子的声学非线性系数与应力的关系。研究结果表明,当加载应力接近材料的屈服极限时,基于应力波因子的声学非线性系数随着应力的增加明显增大,因此可以利用基于应力波因子的声学非线性系数对金属材料表面的塑性损伤进行非线性超声无损评价。

References

[1]  何方成,王铮,史丽军. 复合材料制件拐角部位超声检测技术[J]. 材料工程, 2011,(7): 80-84.HE Fang-cheng, WANG Zheng,SHI Li-jun. Ultrasonic testing technique for the inspection of defects in the corner of composites[J]. Journal of Materials Engineering, 2011,(7): 80-84.
[2]  税国双,汪越胜,曲建民. 材料力学性能退化的超声无损检测与评价[J]. 力学进展, 2005,(1): 52-68.SHUI Guo-shuang, WANG Yue-sheng, QU Jian-min. Advances in nondestructive test and evaluation of material degradation using nonlinear ultrasound[J]. Advances in Mechanics, 2005(1): 52-68.
[3]  邓明晰,PRICE D C,SCOTT D A. 兰姆波非线性效应的实验观察[J]. 声学学报, 2005,(1): 37-46.DENG Ming-xi, PRICE D C,SCOTT D A. Experimental observations of nonlinear effects of Lamb waves[J]. Acta Acustica, 2005,(1): 37-46.
[4]  NAGY P B. Fatigue damage assessment by nonlinear ultrasonic materials characterization[J]. Ultrasonics, 1998, 36(1-5): 375-381.
[5]  CANTRELL J H, YOST W T. Nonlinear ultrasonic characterization of fatigue microstructures[J]. International Journal of Fatigue, 2001,(23): 487-490.
[6]  SHUI G S, KIM J Y, QU J, et al. A new technique for measuring the acoustic nonlinearity of materials using Rayleigh waves[J]. NDT & E International, 2008, 41(5): 326-329.
[7]  吴斌,颜丙生,何存富,等. AZ31镁合金早期力学性能退化非线性超声检测[J]. 航空材料学报, 2011, 31(1): 87-92.WU Bin, YAN Bing-sheng, HE Cun-fu, et al. AZ31 magnesium early mechanical performance degradation nondestructive testing using nonlinear ultrasonic[J]. Journal of Aeronautical Materials, 2011, 31(1): 87-92.
[8]  PRUELL C, KIM J Y, QU J, et al. A nonlinear-guided wave technique for evaluating plasticity-driven material damage in a metal plate[J]. NDT & E International, 2009, 42(3): 199-203.
[9]  BABY S, NAGARAJA K B, OMPRAKASH C M, et al. Creep damage assessment in titanium alloy using a nonlinear ultrasonic technique[J]. Scripta Materialia, 2008, 59(8): 818-821.
[10]  KIM J Y, JACOBS L J, QU J, et al. Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves[J]. Journal of the Acoustical Society of America, 2006, 120,(3): 1266-1273.
[11]  LIU M H, KIM J Y, JACOBS L, et al. Experimental study of nonlinear Rayleigh wave propagation in shot-peened aluminum plates-feasibility of measuring residual stress[J]. NDT & E International, 2011, 44(1): 67-74.
[12]  邓明晰. 复合结构界面粘接强度的声-超声评价研究[J]. 应用声学, 2005, 24(5): 292-299. DENG Ming-xi. Nondestructive evaluation of adhesive strength of composite structures using an acousto-ultrasonic approach[J]. Applied Acoustics, 2005, 24(5): 292-299.
[13]  张谦琳,胡建恺. 复合材料的超声检测新技术Ⅰ. 声-超声技术[J]. 应用声学, 1995,14(4): 38-42. ZHANG Qian-lin,HU Jian-kai. New techniques of ultrasonic testing on composite materials I. The acousto-ultrasonic technique [J]. Applied Acoustics, 1995,14(4): 38-42.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133