全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2013 

较大塑性变形下纳晶镍剪切带的演化模型

DOI: 10.3969/j.issn.1001-4381.2013.11.011

Keywords: 塑性变形,剪切带,纳晶材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

较大塑性变形下,采用TEM原位拉伸实验揭示了纳晶镍内剪切带演化的微观机制,优化了微观力学模型。结果表明在纳米尺度范围内,随着晶粒尺寸的增加,应变软化的趋势越来越明显,剪切带宽度也随着增加;晶粒尺寸降低将导致纳晶材料中剪切带的产生提前;内部特征长度的值随着晶粒尺寸的增加呈现先增加后下降的特点;剪切带内的塑性应变分布为在剪切带两个边界处应变为零,在剪切带中央剪切塑性应变达到最大值。

References

[1]  WEERTMAN J R, FARKAS D, HEMKER K, et al. Structure and mechanical behavior of bulk nanocrystalline materials[J]. MRS Bull, 1999, 24(2): 44-50.
[2]  卢柯, 卢磊. 金属纳米材料力学性能的研究进展[J].金属学报, 2000, 36(8): 785-789.LU Ke, LU Lei. Progress in mechanical properties of nanocrystalline materials[J]. Acta Metallrugica Sinica, 2000, 36(8): 785-789.
[3]  SCHWAIGER R, MOSER B, DAO M, et al. Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel[J]. Acta Mater, 2003, 51(17): 5159-5172.
[4]  CHENG S, MA E, WANG Y M, et al. Tensile properties of in-situ consolidated nanocrystalline Cu[J]. Acta Mater, 2005, 53(5): 1521-1533.
[5]  DALLA TORRE F, VAN SWYGENHOVEN H, VICTORIA M. Nanocrystalline electrodeposited Ni: microstructure and tensile properties[J]. Acta Mater, 2002, 50(15): 3957-3970.
[6]  JIA D, RAMESH K T, MA E. Impedance spectral studies of sol-gel alumina-silver nanocomposites[J]. Acta Mater, 2003, 51(12): 3495-3509.
[7]  SANDERS P G, EASTMAN J A, WEERTMAN J R. Elastic and tensile behavior of nanocrystalline copper and palladium[J]. Acta Mater, 1997, 45(10): 4019-4025.
[8]  KOCH C C. Ductility in nanostructured and ultra fine-grained materials: recent evidence for optimism[J]. J Metastable Nanocryst Mater, 2003, 18: 9-19.
[9]  OVID’KO I A, SHEINERMAN A G. Enhanced ductility of nanomaterials through optimization of grain boundary sliding and diffusion processes[J]. Acta Mater, 2009, 57(7): 2217-2228.
[10]  WEI Y J, BOWER A F, GAO H J. Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding[J]. Acta Mater, 2008, 56(8): 1741-1752.
[11]  WEI Y J, SU C, ANAND L. A computational study of the mechanical behavior of nanocrystalline fcc metals[J]. Acta Mater, 2006, 54(12): 3177-3190.
[12]  ZHU B, ASARO R, KYSL P, et al. Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals[J]. Acta Mater, 2005, 53(18): 4825-4838.
[13]  KIM H S, ESTRIN Y. Phase mixture modeling of the strain rate dependent mechanical behavior of nanostructured materials[J]. Acta Mater, 2005, 53(3): 765-772.
[14]  WEI Q, CHENG S, RAMESH K T, et al. Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals[J]. Mater Sci Eng A, 2004, 381(1-2): 71-79.
[15]  CAPOLUNGO L, JOCHUM C, CHERKAOUI M, et al. On the elastic-viscoplastic behavior of nanocrystalline materials[J]. Int J Plast, 2007, 23(4): 561-591.
[16]  KOCKS U F, MECKING H. Physics and phenomenology of strain hardening[J]. Prog Mater Sci, 2003, 48(3): 171-273.
[17]  GUTKIN M Y, OVID’KO I A. Grain boundary migration as rotational deformation mode in nanocrystalline materials[J]. Appl Phys Lett, 2005, 87(25): 251916-1-3.
[18]  ASHBY M F, VERRALL R A. Diffusion-accommodated flow and superplasticity[J]. Acta Metall, 1973, 21(2): 149-163.
[19]  GIANOLA D S, VAN PETEGEM S, LEGROS M, et al. Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films[J]. Acta Mater, 2006, 54(8): 2253-2263.
[20]  FARKAS D, FROSETH A, VAN SWYGENHOVEN H. Grain boundary migration during room temperature deformation of nanocrystalline Ni[J]. Scripta Mater, 2006, 55(8): 695-698.
[21]  ROMANOV A E, KOLESNIKOVAB A L, OVID’KO I A, et al. Disclinations in nanocrystalline materials: Manifestation of the relay mechanism of plastic deformation[J]. Mater Sci Eng A, 2009, 503(1-2): 62-67.
[22]  BOWER A F, WINIGER E. A two-dimensional finite element method for simulating the constitutive response and microstructure of polycrystals during high temperature plastic deformation[J]. J Mech Phys Solids, 2004, 52(6): 1289-1317.
[23]  FEDOROV A A, GUTKIN M Y, OVID’KO I A. Transformations of grain boundary dislocation pile-ups in nano-and polycrystalline materials[J]. Acta Mater, 2003, 51(4): 887-898.
[24]  ASKES H, PAMIN J, DE BORST R. Dispersion analysis and element-free Galerkin solutions of second-and fourth-order gradient-enhanced damage models[J]. Int J Numer Meth Eng, 2000, 49(6): 811-832.
[25]  MA L, ZHOU J Q, ZHU R T, et al. Effects of strain gradient on the mechanical behaviors of nanocrystalline materials[J]. Mater Sci Eng A, 2009, 507(1-2): 42-49.
[26]  周宇松,吴希俊,许国良,等. 大尺寸纳米铜和银的制备及其微观缺陷与力学性能[J].中国有色金属学报,2000, 10(4): 465-469.ZHOU Yu-song, WU Xi-jun, XU Guo-liang, et al. Synthesis, microdefects and mechanical properties of large bulk nanocrystalline silver and copper[J]. The Chinese Journal of Nonferrous Metals, 2000, 10(4): 465-469.
[27]  周宇松, 吴希俊. 纳米金属的力学性能[J].力学进展, 2001, 31(1): 62-69.ZHOU Yu-song, WU Xi-jun. Mechanical properties of nanocrystalline metals[J]. Advances in Mechanics, 2001, 31(1): 62-69.
[28]  WEI Q, JIA D, RAMESH K T, et al. Evolution and microstructure of shear bands in nanostructured Fe[J]. Appl Phys Lett, 2002, 81(7): 1240-1242.
[29]  PANNI A V, PANIN A A, IVANOV Y F. Deformation macrolocalisation and fracture in ultrafine-grained armco iron[J]. Mater Sci Eng A, 2008, 486(1-2): 267-272.
[30]  CARSLEY J E, FISHER A, MILLIGAN W W, et al. Mechanical behavior of a bulk nanostructured iron alloy[J]. Metall Mater Trans A, 1998, 29(9): 2261-2271.
[31]  HUNG P C, SUN P L, YU C Y, et al. Inhomogeneous tensile deformation in ultrafine-grained aluminum[J]. Scripta Mater, 2005, 53(6): 647-652.
[32]  SANSOZ F, DUPONT V. Atomic mechanism of shear localization during indentation of a nanostructured metal[J]. Mater Sci Eng C, 2007, 27(5-8): 1509-1513.
[33]  FU H H, BENSON D J, MEYERS M A. Computational description of nanocrystalline deformation based on crystal plasticity[J]. Acta Mater, 2004, 52(15): 4413-4425.
[34]  WEI Y J, ANAND L. Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals[J]. J Mech Phys Solids, 2004, 52(11): 2587-2616.
[35]  WARNER D H, SANSOZ F, MOLINARI J F. Atomistic based continuum investigation of plastic deformation in nanocrystalline copper[J]. Int J Plast, 2006, 22(4): 754-774.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133