全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2014 

循环载荷作用下镁合金温度演化及高周疲劳性能预测

DOI: 10.3969/j.issn.1001-4381.2014.01.016, PP. 85-89

Keywords: AZ31B镁合金,红外热像法,温度演化,疲劳性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于红外热像法对AZ31B镁合金板材室温下的高周疲劳性能进行了研究。使用红外热成像仪测量整个疲劳过程中试件表面温度变化。结果表明镁合金疲劳加载过程中的温度变化分为初始温度增加、温度降低、温度恒定、温度快速上升、温度最后下降5个部分。采用基于热传导、热弹性和非弹性效应的理论模型解释了疲劳加载过程中的温度变化。红外热像法预测的AZ31B镁合金疲劳极限113MPa与实验结果108MPa相对误差约为4.8%。基于镁合金表面温度的变化,提出了ΔTmax-N曲线预测疲劳寿命的方法,即通过测量阶段Ⅰ温升最大值预测镁合金的疲劳断裂,并计算其疲劳寿命。

References

[1]  陈振华. 变形镁合金[M]. 北京: 化学工业出版社, 2005.1-3.
[2]  熊缨, 程利霞.挤压AZ31B镁合金多轴疲劳寿命预测[J]. 金属学报, 2012, 48(12):1446-1452.XIONG Y, CHENG L X. Multial fatigue life prediction for extruded AZ31B magnesium alloy[J]. Acta Metallurgica Sinica, 2012, 48(12):1446-1452.
[3]  郭杏林, 王晓钢. 疲劳热像法研究综述[J]. 力学进展, 2009, 39(2): 217-227.GUO X L, WANG X G. Overview on the thermographic method for fatigue research[J]. Advances in Mechanics, 2009, 39(2): 217-227.
[4]  ROSA G LA, RISITANO A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components[J]. International Journal of Fatigue, 2000, 22 (1): 65-73.
[5]  LUONG M P. Infrared thermographic scanning of fatigue in metals[J]. Nuclear Engineering Design, 1995, 158(223): 363-368.
[6]  刘浩, 赵军, 丁桦. 疲劳过程中生热机理的实验探讨[J]. 实验力学, 2008, 23(1): 1-8.LIU H, ZHAO J, DING H. Experimental study on heat production mechanism during fatigue process[J]. Journal of Experimental Mechanics, 2008, 23(1):1-8.
[7]  YAN Z F, ZHANG H X, WANG W X, et al. Temperature evolution and fatigue life evaluation of AZ31B magnesium alloy based on infrared thermography[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(7):1942-1948.
[8]  JIANG L, WANG H, LIAW P K, et al. Temperature evolution and life prediction in fatigue of superalloys[J]. Metallurgical and Materials Transactions A, 2004, 35(3): 839-848.
[9]  李娜. 基于能量耗散理论的疲劳试验研究. 西安: 西北工业大学, 2006.
[10]  王晓钢. 基于热像法的寿命预测与疲劳分析. 大连: 大连理工大学, 2009.
[11]  RISITANO A, RISITANO G. Cumulative damage evaluation of steel using infrared thermography[J]. Theoretical and Applied Fracture Mechanics, 2010, 54(2): 82-90.
[12]  FAN J L, GUO X L, WU C W, et al. Research on fatigue behavior evaluation and fatigue fracture mechanisms of cruciform welded joints[J]. Materials Science and Engineering:A, 2011, 528(29-30): 8417-8427.
[13]  闫志峰, 张红霞, 王文先, 等. 红外热成像法预测镁合金的疲劳性能[J]. 机械工程材料, 2012, 36(2):72-75. YAN Z F, ZHANG H X, WANG W X, et al. Infrared thermography technology predicting fatigue property of AZ31B magnesium alloy[J]. Materials for Mechanical Engineering, 2012, 36(2):72-75.
[14]  RANC N, WAGNER D, PARIS P C. Study of thermal effects associated with crack propagation during very high cycle fatigue tests[J]. Acta Materialia, 2008, 56(15): 4012-4021.
[15]  UMMENHOFER T, MEDGENBERG J. On the use of infrared thermography for the analysis of fatigue damage processes in welded joints[J]. International Journal of Fatigue, 2009, 31 (1): 130-137.
[16]  CUR F, CURTI G, SESANA R. A new iteration method for the thermographic determination of fatigue limit in steels[J]. International Journal of Fatigue, 2005, 27(4): 453-459.
[17]  YANG B, LIAW P K, MORRISON M, et al. Temperature evolution during fatigue damage[J]. Intermetallics, 2005, 13(3-4): 419-428.
[18]  PASTOR M L, BALANDRAUD X, GR?DIAC M, et al. Applying infrared thermography to study the heating of 2024-T3 aluminium specimens under fatigue loading[J]. Infrared Physics & Technology, 2008, 51(6): 505-515.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133