尚继武,张以河,吕凤柱. 高介电常数聚合物基复合材料研究进展[J]. 材料工程,2012, (5):87-92.SHANG J W, ZHANG Y H, LU F Z. Recent progress of high-dielectric-constant polymer composites[J]. Journal of Materials Engineering, 2012, (5): 87-92.
[2]
DESCHANVRES A, RAVEAU B, TOLLEMER F. Remplacement de metal bivalent par le cuivre dans les titanates de type perovskite[J]. Bulletin de la Socie Technique de France, 1967, (11): 4077-4078.
[3]
SUBRAMANIAN M A, LI D, DUAN N,et al. High dielectric constant in ACu3TiO12 and ACu3TiFeO12 phases[J]. Journal of Solid State Chemistry, 2000, 151(2): 323-325.
[4]
KWON S, CANN D P. Influence of the processing rates and sintering temperatures on the dielectric properties of CaCu3Ti4O12 ceramics[J]. Journal of Electrocerams, 2010, 24(3): 231-236.
[5]
RUBIA M A, FRUTOS P L J, FERNANDEZ J F. Effect of the synthesis route on the microstructure and the dielectric behavior of CaCu3Ti4O12 ceramics[J]. Journal of the American Ceramic Society, 2012, 95(6): 1866-1870.
[6]
NI W Q, ZHENG X H, YU J C. Sintering effects on structure and dielectric properties of dielectrics CaCu3Ti4O12 [J]. Journal of Materials Science, 2007, 42(3): 1037-1041.
[7]
BENDER B A, PAN M J. The effect of processing on the giant dielectric properties of CaCu3Ti4O12[J]. Materials Science and Engineering: B, 2005, 117(3): 339-347.
[8]
ADAMS T B, SINCLAIRB D C, WEST A R. Influence of processing conditions on the electrical properties of CaCu3Ti4O12 ceramics[J]. Journal of the American Ceramic Society, 2006, 89(10): 3129-3135.
[9]
SUN D L, WU A Y, YIN S T. Structure, properties, and impedance spectroscopy of CaCu3Ti4O12 ceramics prepared by sol-gel process[J]. Journal of the American Ceramic Society, 2008, 91(1): 169-173.
[10]
PRAKASH B S, VARMA K B R. The influence of the segregation of Cu-rich phase on the microstructural and impedance characteristics of CaCu3Ti4O12 ceramics[J]. Journal of Materials Science, 2007, 42(17): 7467-7477.
[11]
BRIZE V, GRUENER G, WOLFMAN J, et al. Grain size effects on the dielectric constant of CaCu3Ti4O12 ceramics[J]. Materials Science and Engineering: B, 2006, 129(1): 135-138.
[12]
FELIX A A, ORLANDI M O, VARELA J A. Schottky-type grain boundaries in CCTO ceramics[J]. Solid State Communications, 2011, 151(19): 1377-1381.
[13]
ADAMS T B, SINCLAIR D C, WEST A R. Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics[J]. Advanced Materials, 2002, 14(18): 1321-1323.
[14]
FANG T T, SHIAU H K. Mechanism for developing the boundary barrier layers of CaCu3Ti4O12[J]. Journal of the American Ceramic Society, 2004, 87(11): 2072-2079.
[15]
LI J, SLEIGHT A W, SUBRAMANIAN M A. Evidence for internal resistive barriers in a crystal of the giant dielectric constant material: CaCu3Ti4O12[J]. Solid State Communications, 2005, 135(4): 260-262.
[16]
SCHMIDT R, STENNETT M C, HYATT N C,et al. Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics[J]. Journal of the European Ceramic Society, 2012, 32(12): 3313-3323.
[17]
ARBATTI M, SHAN X B, CHENG Z Y. Ceramic-polymer composites with high dielectric constant[J]. Advanced Materials, 2007, 19(10): 1369-1372.
[18]
THOMAS P, ERNEST RAVINDRAN R S, VARMA K B R. Dielectric properties of poly(methyl methacrylate) (PMMA)/CaCu3Ti4O12 Composites[J]. arXiv preprint arXiv: 1301.4070, 2013.
[19]
LU J X, MOON K S, KIM B K, et al. High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications[J]. Polymer, 2007, 48(1): 1510-1516.
[20]
HO C H, LIU C D, HSIEH C H, et al. High dielectric constant polyaniline/poly (acrylic acid) composites prepared by in situ polymerization[J]. Synthesis Metals, 2008, 158(6): 630-637.
[21]
DANG Z M, ZHOU T, YAO S H, et al. Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity[J]. Advanced Materials, 2009, 21(20): 2077-2082.
[22]
STEFANESCU E A, TAN X L, LIN Z Q, et al. Multifunctional PMMA-ceramic composites as structural dielectrics[J]. Polymer, 2010, 51(24): 5823-5832.
[23]
AMARAL F, RUBINGER C P L, HENRY F, et al. Dielectric properties of polystyrene-CCTO composite[J]. Journal of Non-Crystalline Solids, 2008, 354(47): 5321-5322.
[24]
WANG F J, ZHOU D X, HU Y X. Preparation and dielectric properties of CaCu3Ti4O12-polyethersulfone composites[J]. Physics Status Solidi A, 2009, 206(11): 2632-2636.
[25]
THOMAS P, VARUGHESE K T, DWARAKANATH K, et al. Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 composites[J]. Composites Science and Technology, 2010, 70(3): 539-545.
[26]
BABU S, SINGH K, GOVINDAN A. Dielectric properties of CaCu3Ti4O12-silicone resin composites[J]. Applied Physics A, 2012, 107(3): 697-700.
[27]
YANG W H, YU S H, SUN R,et al. Nano-and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites[J]. Acta Materialia, 2011, 59(14) 5593-5602.
[28]
ZHANG L, SHAN X B, WU P X,et al. Dielectric characteristics of CaCu3Ti4O12/P(VDF-TrFE) nanocomposites[J]. Applied Physics A, 2012, 107(3): 597-602.
[29]
SHEN Y P, GU A J, LIANG G Z, et al. High performance CaCu3Ti4O12/cyanate ester composites with excellent dielectric properties and thermal resistance[J]. Composites: Part A, 2010, 41(11): 1668-1676.
[30]
PRAKASH B S, VARMA K B R. Dielectric behavior of CCTO/epoxy and Al-CCTO/epoxy composites[J]. Composites Science and Technology, 2007, 67(11): 2363-2368.
[31]
YANG W H, YU S H, SUN R, et al. Electrical modulus analysis on the Ni/CCTO/PVDF system near the percolation threshold[J]. Journal of Physics D: Applied Physics, 2011, 44(47): 475305-8.