全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2014 

回归再时效中预时效温度对7050铝合金应力腐蚀性能的影响

DOI: 10.11868/j.issn.1001-4381.2014.05.006, PP. 29-34

Keywords: 7050铝合金,预时效温度,析出相,应力腐蚀

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用硬度测试、电导率测试、慢应变速率拉伸、透射电镜和扫描电镜等方法,研究了回归再时效热处理工艺中预时效温度对7050铝合金微观组织和应力腐蚀性能的影响。结果表明随着预时效温度升高,回归再时效后7050铝合金晶内析出相从以GP区为主转变为以η'相为主,晶界析出相逐渐粗化,晶界变得不连续分布,合金应力腐蚀敏感性降低;但晶界无沉淀析出带宽度增加,120℃时达到140nm,易导致应力集中和阳极溶解,合金抗应力腐蚀性能下降。预时效温度为80℃,即稍微欠时效时,7050铝合金抗应力腐蚀性能较好,在缓慢应变速率(10-6s-1)和3.5%NaCl溶液腐蚀介质下,合金抗拉强度为473.5MPa,伸长率为10.67%,应力腐蚀指数为0.05824。

References

[1]  INOUE H,SATO T,KOJIMA Y,et al.The temperature limit for GP zone formation in an Al-Zn-Mg alloy[J].Metallurgical Transactions A,1981,12(8):1429-1434.
[2]  MARLAUD T,DESCHAMPS A,BLEY F,et al.Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy[J].Acta Materialia,2010,58(14):4814-4826.
[3]  NING A L,LIU Z Y,PENG B S,et al.Redistribution and re-precipitation of solute atom during retrogression and reaging of Al-Zn-Mg-Cu alloys[J]. Transactions of Nonferrous Metals Society of China,2007,17(5):1005-1011.
[4]  KOVACS I,LENDVAI J,UNGAR T,et al.Mechanical properties of AlZnMg alloys[J].Acta Metallurgica,1980,28(12):1621-1631.
[5]  杨德钧,沈卓身.金属腐蚀学[M].北京:冶金工业出版社,1999.
[6]  陈送义,陈康华,彭国胜,等.固溶温度对Al-Zn-Mg-Cu系铝合金组织与应力腐蚀的影响[J].粉末冶金材料科学与工程,2010,15(5):456-462. CHEN Song-yi,CHEN Kang-hua,PENG Guo-sheng,et al.Effect of solution temperature on microstructure and stress corrosion of Al-Zn-Mg-Cu aluminum alloy[J].Materials Science and Engineering of Powder Metallurgy,2010,15(5):456-462.
[7]  方华婵,陈康华,巢宏,等.Al-Zn-Mg-Cu系超强铝合金的研究现状与展望[J].粉末冶金材料科学与工程,2009,14(6):351-358.FANG Hua-chan,CHEN Kang-hua, CHAO Hong,et al.Current research status and prospects of ultra strength Al-Zn-Mg-Cu alloy[J].Materials Science and Engineering of Powder Metallurgy,2009,14(6):351-358.
[8]  HEINZ A,HASZLER A,KEIDEL C,et al.Recent development in aluminium alloys for aerospace applications[J].Materials Science and Engineering:A,2000,280(1):102-107.
[9]  吴奭登.7050铝合金时效强化行为研究[D].哈尔滨:哈尔滨工业大学,2006.32-37.
[10]  张新明,宋丰轩,刘胜胆,等.双级时效对7050铝合金板材剥蚀性能的影响[J].中南大学学报:自然科学版,2011,42(8):2252-2259.ZHANG Xin-ming,SONG Feng-xuan,LIU Sheng-dan,et al.Influence of two-step aging on exfoliation corrosion properties of 7050 aluminum alloy plate[J].Journal of Central South University:Science and Technology,2011,42(8):2252-2259.
[11]  BUHA J,LUMLEY R N,CROSKY A G.Secondary ageing in an aluminium alloy 7050[J].Materials Science and Engineering :A,2008,492(1): 1-10.
[12]  CINA B M.Reducing the susceptibility of alloys,particularly aluminum alloys,to stress corrosion cracking[P].US Patent:3856584,1974-12-24.
[13]  BROWN M H,STALEY J T,LIU J, et al.Aluminum alloy product having improved combinations of strength and corrosion properties and method for producing the same[P].US Patent:4863528,1989-09-05.
[14]  THOMPSON J J,TANKINS E S,AGARWALA V S.A heat treatment for reducing corrosion and stress corrosion cracking susceptibilities in 7XXX aluminium alloys[J]. Materials Performance, 1987, 26(6): 45-52.
[15]  HALL M B, MARTIN J W. The effect of retrogression temperture on the properties of an RRA (retrogressed and Re-aged) 7150 aluminium alloy[J]. Zeitschrift fuer Metallkunde,1994,85(2):134-139.
[16]  ISLAM M U,WALLACE W.Retrogression and reaging response of 7475 aluminium alloy[J].Metals Technology,1983,10(1):386-392.
[17]  大西忠一. 高力アルミニウム合金の耐SCC性を改善する新しい熱処理法[J].热处理,1992,32(2):83-88. OONISHI C. A new method of heat treatment for improving stress corrosion performance of aluminum alloy[J].Heat Treat,1992, 32(2): 83-88.
[18]  LIN J,KERSKER M M.Heat treatment of precipitation hardening alloys [P].US Patent:5108520,1992-04-28.
[19]  KAUFMAN M J,FINK J L.Evidence for localized ductile fracture in the "brittle" transgranular stress corrosion cracking of ductile FCC alloys[J]. Acta Metallurgica,1988,36(8): 2213-2228.
[20]  曹楚南,黄彦良,林海潮.321不锈钢在酸性氯离子溶液中的应力腐蚀开裂机理[J].金属学报,1993,29(5):212-216. CAO Chu-nan,HUANG Yan-liang,LIN Hai-chao.The mechanism of stress corrosion cracking of 321 stainless steel in acidic chloride solution[J]. Acta Metallurgica Sinica,1993,29(5):212-216.
[21]  魏学军,周向阳,柯伟.散斑干涉微区应变测量术在腐蚀疲劳裂尖形变研究中的应用[J].金属学报,1993,29(6):269-273. WEI Xue-jun,ZHOU Xiang-yang,KE Wei.Application of speckle interference micro-zone strain measurement technique in deformation of corrosion fatigue crack tip[J]. Acta Metallurgica Sinica,1993,29(6):269-273.
[22]  王磊.材料的力学性能[M].辽宁:东北大学出版社,2007.
[23]  HANSEN V,STILLER K,WATERLOO G.Structures and transformations during artificial aging of an industrial 7xxx-series Al-Zn-Mg-Zr alloy[J].Materials Science Forum,2002, 396-402: 815-820.
[24]  SHA G,CEREZO A.Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050)[J].Acta Materialia, 2004,52(15):4503-4516.
[25]  ROBSON J D.Microstructural evolution in aluminium alloy 7050 during processing[J].Materials Science and Engineering: A, 2004, 382(1):112-121.
[26]  冯春.Al-Zn-Mg-Cu超高强铝合金RRA工艺研究.长沙:中南大学,2006.
[27]  HORNBOGEN E,GRF M.Fracture toughness of precipitation hardened alloys containing narrow soft zones at grain boundaries[J].Acta Metallurgica,1977,25(8):877-881.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133