全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
材料工程  2015 

TEMPO氧化纤维素纳米纤维的制备及应用研究进展

DOI: 10.11868/j.issn.1001-4381.2015.08.014, PP. 84-91

Keywords: TEMPO,氧化,纤维素,纳米纤维

Full-Text   Cite this paper   Add to My Lib

Abstract:

介绍了TEMPO氧化纤维素纳米纤维(TEMPO-OxidizedCelluloseNanofibers,TOCNs)近年来的研究成果,探讨了TOCNs制备方面的研究进展,其中包括TEMPO氧化反应体系的进展,各种纤维原料的研究以及氧化纤维素均质处理过程各影响因素的探讨。将TOCNs的应用研究成果系统归纳为四大类,即复合材料,膜材料,纳米纸及其他应用。评述了其发展概况,并指出了该催化氧化体系存在的问题及今后的发展方向。

References

[1]  SAITO T, ISOGAI A. Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2006,289(1-3):219-225.
[2]  SAITO T, HIROTA M, TAMURA N, et al. Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions[J]. Biomacromolecules,2009,10(7):1992-1996.
[3]  SAITO T, HIROTA M, TAMURA N, et al. Oxidation of bleached wood pulp by TEMPO/NaClO/NaClO2 system: effect of the oxidation conditions on carboxylate content and degree of polymerization[J]. Journal of Wood Science,2010,56(3):227-232.
[4]  MISHRA S P, THIRREE J, MANENT A S, et al. Ultrasound-catalyzed TEMPO-mediated oxidation of native cellulose for the production of nanocellulose: effect of process variables[J]. Bioresources,2011,6(1):121-143.
[5]  RATTAZ A, MISHRA S P, CHABOT B, et al. Cellulose nanofibres by sonocatalysed-TEMPO-oxidation[J]. Cellulose,2011,18(3):585-593.
[6]  刘金刚,胡云. 纳米纤维素的制备及研究项目[J]. 中华纸业, 2013,34(6):33-36. LIU J G, HU Y. Overview on preparation and research projects of nanocellulose[J]. China Pulp &Paper Industry,2013,34(6):33-36.
[7]  MONTANARI S, ROUNTANI M, HEUX L, et al. Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation[J]. Macromolecules,2005,38(5):1665-1671.
[8]  OKITA Y, SAITO T, ISOGAI A. TEMPO-mediated oxidation of softwood thermomechanical pulp[J]. Holzforschung,2009,63(5):529-535.
[9]  SAITO T, KIMURA S, NISHIYAMA Y, et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose[J]. Biomacromolecules,2007,8(8):2485-2491.
[10]  VEIGEL S, MULLER U, KECKES J, et al. Cellulose nanofibrils as filler for adhesives: effect on specific fracture energy of solid wood-adhesive bonds[J]. Cellulose,2011,18(5):1227-1237.
[11]  BESBES I, VILAR M R, BOUFI S. Nanofibrillated cellulose from alfa, eucalyptus and pine fibres: preparation, characteristics and reinforcing potential[J]. Carbohydrate Polymers,2011,86(3):1198-1206.
[12]  OKITA Y, SAITO T, ISOGAI A. Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation[J]. Biomacromolecules,2010,11(6):1696-1700.
[13]  MARQUES G, RENCORET J, GUTIERREZ A, et al. Evaluation of the chemical composition of different non-woody plant fibres used for pulp and paper manufacturing[J]. The Open Agriculture Journal,2010,3:1-9.
[14]  ALILA S, BESBES I, VILAR M R, et al. Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study[J]. Ind Crop Prod,2013,41:250-259.
[15]  IWAMOTO S, ABE K, YANO H. The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics[J]. Biomacromolecules,2008,9(3):1022-1026.
[16]  BESBES I, ALILA S, BOUFI S. Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content[J]. Carbohydrate Polymers,2011,84(3):975-983.
[17]  HIROTA M, TAMURA N, SAITO T, et al. Cellulose II nanoelements prepared from fully mercerized, partially mercerized and regenerated celluloses by 4-acetamido-TEMPO/NaClO/NaClO2 oxidation[J]. Cellulose,2012,19(2):435-442.
[18]  LORANGER E, PICH A O, DANEAULT C. Influence of high shear dispersion on the production of cellulose nanofibers by ultrasound-assisted TEMPO-oxidation of kraft pulp[J]. Nanomaterials,2012,2(3):286-297.
[19]  OKITA Y, FUJISAWA S, SAITO T, et al. TEMPO-oxidized cellulose nanofirils dispersed in organic solvents[J]. Biomacromolecules,2011,12(2):518-522.
[20]  SIRO I, PLACKETT D. Microfibrillated cellulose and new nanocomposite materials: a review[J]. Cellulose,2010,17(3):459-494.
[21]  ENDO R, SAITO T, ISOGAI A. TEMPO-oxidized cellulose nanofibril/poly(vinyl alcohol) composite drawn fibers[J]. Polymer,2013,54(2):935-941.
[22]  ISOGAI A, SAITO T, FUKUZUMI H. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale,2011,3(1):71-85.
[23]  SAITO T, KURAMAE R, WOHLERT J, et al. An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation[J]. Biomacromolecules,2013,14(1):248-253.
[24]  LI Z, RENNECKAR S, BARONE J R. Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose[J]. Cellulose,2010,17(1):57-68.
[25]  KOGA H, SAITO T, KITAOKA T, et al. Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube[J]. Biomacromolecules,2013,14(4):1160-1165.
[26]  SHIMIZU M, FUKUZUMI H, SAITO T, et al. Preparation and characterization of TEMPO-oxidized cellulose nanofibrils with ammonium carboxylate groups[J]. International Journal of Biological Macromolecules,2013,59:99-104.
[27]  WANG M, ANOSHKIN I V, NASIBULIN A G, et al. Modifying native nanocellulose aerogels with carbon nanotubes for mechanoresponsive conductivity and pressure sensing[J]. Advanced Materials,2013,25(17):2428-2432.
[28]  MELONE L, ALTOMARE L, ALFIERI I, et al. Ceramic aerogels from TEMPO-oxidized cellulose nanofibre templates: synthesis, characterization, and photocatalytic properties[J]. Journal of Photochemistry and Photobiology A:Chemistry,2013,261:53-60.
[29]  HUSING N, SCHUBERT U. Aerogels-airy materials: chemistry, structure, and properties[J]. Angewandte Chemie International Edition,1998,37(1-2):22-45.
[30]  CARLSSON D O, NYSTR M G, ZHOU Q, et al. Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties[J]. Journal of Materials Chemistry,2012,22(36):19014-19024.
[31]  KOGA H, AZETSU A, TOKUNAGA E, et al. Topological loading of Cu(Ⅰ) catalysts onto crystalline cellulose nanofibrils for the Huisgen click reaction[J]. Journal of Materials Chemistry,2012,22(12):5538-5542.
[32]  HUANG M M, CHEN F R, JIANG Z Y, et al. Preparation of TEMPO-oxidized cellulose/amino acid/nanosilver biocomposite film and its antibacterial activity[J]. International Journal of Biological Macromolecules,2013,62:608-613.
[33]  IFUKU S, TSUJI M, MORIMOTO M, et al. Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers[J]. Biomacromolecules,2009,10(9):2714-2717.
[34]  SYVERUD K, XHANARI K, CHINGA C G, et al. Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy[J]. Journal of Nanoparticle Research,2011,13(2):773-782.
[35]  BRODIN F W, LUND K, BRELID H, et al. Reinforced absorbent material: a cellulosic composite of TEMPO-oxidized MFC and CTMP fibres[J]. Cellulose,2012,19(4):1413-1423.
[36]  FUKUZUMI H, SAITO T, IWATA T, et al. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation[J]. Biomacromolecules,2009,10(1):162-165.
[37]  QING Y, SABO R, WU Y Q, et al. High-performance cellulose nanofibril composite films[J]. Bioresources,2012,7(3):3064-3075.
[38]  DUBIEF D, SAMAIN E, DUFRESNE A. Polysaccharide microcrystals reinforced amorphous poly(β-hydroxyoctanoate) nanocomposite materials[J]. Macromolecules,1999,32(18):5765-5771.
[39]  FUJISAWA S, IKEUCHI T, TAKEUCHI M, et al. Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies[J]. Biomacromolecules,2012,13(7):2188-2194.
[40]  BULOTA M, VESTERINEN A H, HUGHES M, et al. Mechanical behavior, structure, and reinforcement processes of TEMPO-oxidized cellulose reinforced poly(lactic) acid[J]. Polymer Composite,2013,34(2):173-179.
[41]  CHINGA C G, SYVERUD K. On the structure and oxygen transmission rate of biodegradable cellulose nanobarriers[J]. Nanoscale Research Letters,2012,7(1):192-197.
[42]  FUKUZUMI H, SAITO T, IWAMOTO S, et al. Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy[J]. Biomacromolecules,2011,12(11):4057-4062.
[43]  FUJISAWAS,OKITA Y,FUKUZUMI H,et al.Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups[J]. Carbohydrate Polymers,2011,84(1):579-583.
[44]  WU C N, SAITO T, FUJISAWA S, et al. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites[J]. Biomacromolecules,2012,13(6):1927-1932.
[45]  RODIONOVA G, ERIKSEN ?, GREGERSEN ?. TEMPO-oxidized cellulose nanofiber films: effect of surface morphology on water resistance[J]. Cellulose,2012,19(4):1115-1123.
[46]  RODIONOVA G, SAITO T, LENES M, et al. Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized norway spruce and eucalyptus pulps[J]. Cellulose,2012,19(3):705-711.
[47]  FUKUZUMI H, SAITO T, ISOGAI A. Influence of TEMPO-oxidized cellulose nanofibril length on film properties[J]. Carbohydrate Polymers,2013,93(1):172-177.
[48]  ORELMA H, FILPPONEN I, JOHANSSON L S, et al. Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics[J]. Biointerphases, 2012,7(1-4):61-72.
[49]  QING Y, SABO R, ZHU J Y, et al. A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches[J]. Carbohydrate Polymers,2013,97(1):226-234.
[50]  董凤霞,刘文,刘红峰. 纳米纤维素的制备及应用[J]. 中国造纸,2012,31(6):68-73.DONG F X, LIU W, LIU H F.Preparation and application of nanocellulose[J]. China Pulp &Paper,2012,31(6):68-73.
[51]  CAO X, DING B, YU J, et al. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers[J]. Carbohydrate Polymers,2012,90(2):1075-1080.
[52]  SAITO T, SHIBATA I, ISOGAI A, et al. Distribution of carboxylate groups introduced into cotton linters by the TEMPO-mediated oxidation[J]. Carbohydrate Polymers,2005,61(4):414-419.
[53]  SAITO T, ISOGAI A. TEMPO-mediated oxidation of native cellulose. the effect of oxidation condition on chemical and crystal structures of the water-insoluble fractions[J]. Biomacromolecules,2004,5(5):1983-1989.
[54]  SAITO T, NISHIYAMA Y, PUTAUX J L, et al. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose[J]. Biomacromolecules,2006,7(6): 1687-1691.
[55]  CHINGA C G, YU Y, DISERUD O. Quantitative electron microscopy of cellulose nanofibril structures from eucalyptus and Pinus radiata kraft pulp fibers[J]. Microscopy and Microanalysis,2011,17(4):563-571.
[56]  QIN Z Y, TONG G L, CHIN Y C F, et al. Preparation of ultrasonic-assisted high carboxylate content cellulose nanocrystals by TEMPO oxidation[J]. Bioresources,2011,6(2):1136-1146.
[57]  QIAN Y, QIN Z Y, VU N M, et al. Comparison of nanocrystals from TEMPO oxidation of bamboo, softwood, and cotton linter fibers with ultrasonic-assisted process[J]. Bioresources,2012,7(4):4952-4964.
[58]  ZHOU Y M, FU S Y, ZHENG L M, et al. Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films[J]. Express Polymer Letters,2012,6(10):794-804.
[59]  GAO K, SHAO Z, WU X, et al. Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper[J]. Carbohydrate Polymers,2013,97(1):243-251.
[60]  杨建校,章丽萍,左宋林,等. TEMPO氧化法制备氧化纤维素纳米纤维[J]. 东北林业大学学报,2011,39(3):96-105. YANG J X, ZHANG L P, ZUO S L, et al. Production of cellulose nanofibers by TEMPO oxidation approach[J]. Journal of Northeast Forestry University,2011,39(3):96-105.
[61]  IWAMOTO S, KAI W, ISOGAI T, et al. Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils[J]. Polymer Degradation and Stability,2010,95(8):1394-1398.
[62]  DE NOOY A E J, BESEMER A C, BEKKUM V H, et al. TEMPO-mediated oxidation of pullulan and influence of ionic strength and linear charge density on the dimensions of the obtained polyelectrolyte chains[J]. Macromolecules,1996,29(20):6541-6547.
[63]  SHIBATA I, ISOGAI A. Depolymerization of cellouronic acid during TEMPO-mediated oxidation[J]. Cellulose,2003,10(2):151-158.
[64]  IWAMOTO S, NAKAGAITO A N, YANO H. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites[J]. Applied Physics A,2007,89(2):461-466.
[65]  SEHAQUI H, ZHOU Q, IKKALA O, et al. Strong and tough cellulose nanopaper with high specific surface area and porosity[J]. Biomacromolecules,2011,12(10):3638-3644.
[66]  ZHU H L, XIAO Z G, LIU D T,et al. Biodegradable transparent substrates for flexible organic-light-emitting diodes[J]. Energy & Environmental Science,2013,6(7):2105-2111.
[67]  NIU Q Y,GAO K Z,SHAO Z Q. Cellulose nanofiber/single-walled carbon nanotube hybrid non-woven macrofiber mats as novel wearable supercapacitors with excellent stability, tailorability and reliability[J]. Nanoscale,2014,6(8):4083-4088.
[68]  GUIMOND R, CHABOT B, LAW K N, et al. The use of cellulose nanofibres in papermaking[J]. Journal of Pulp and Paper Science,2010,36(1-2):55-61.
[69]  MA H, HSIAO B S, CHU B. Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO22+in water[J]. ACS Macro Letters,2012,1(1):213-216.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133