ZHAO Y, GUO X, REN M. Lock-in infrared thermography for non-destructive testing of grid stiffened composite structure[J]. Advanced Science Letters,2012,5(2):593-596.
[2]
OFFERMANN S, BEAUDOIN J L, BISSIEUX C, et al. Thermoelastic stress analysis under nonadiabatic conditions[J]. Experimental Mechanics,1997,37(4):409-413.
[3]
YANG B, LIAW P K, MORRISON M, et al. Temperature evolution during fatigue damage[J]. Intermetallics,2005,13(3):419-428.
[4]
MEOLA C, CARLOMAGNO G M. Recent advances in the use of infrared thermography[J]. Measurement Science and Technology,2004,15(9):27.
[5]
UMMENHOFER T, MEDGENBERG J. On the use of infrared thermography for the analysis of fatigue damage processes in welded joints[J]. International Journal of Fatigue,2009,31(1):130-137.
[6]
FAN J L, GUO X L, WU C W, et al. Research on fatigue behavior evaluation and fatigue fracture mechanisms of cruciform welded joints[J]. Materials Science and Engineering:A,2011,528(29):8417-8427.
[7]
YAN Z, ZHANG H, WANG W, et al. Temperature evolution and fatigue life evaluation of AZ31B magnesium alloy based on infrared thermography[J]. Transactions of Nonferrous Metals Society of China,2013,23(7):1942-1948.
[8]
ZHANG L, LIU X S, WU S H, et al. Rapid determination of fatigue life based on temperature evolution[J]. International Journal of Fatigue,2013,54:1-6.
[9]
PITARRESI G, PATTERSON E A. A review of the general theory of thermoelastic stress analysis[J]. The Journal of Strain Analysis for Engineering Design,2003,38(5):405-417.
[10]
BRéMOND P, POTET P. Lock-in thermography: a tool to analyze and locate thermomechanical mechanisms in materials and structures[A]. Proceedings of SPIE, Thermosense XXIII[C]. Orlando:SPIE Press,2001.560-566.
[11]
KRAPEZ J C, PACOU D. Thermography detection of damage initiation during fatigue tests[A]. Proceedings of SPIE, Thermosense XXIV[C]. Orlando:SPIE Press,2002.534-449.
[12]
LUONG M P. Fatigue limit evaluation of metals using an infrared thermographic technique[J]. Mechanics of Materials,1998,28(1):155-163.
[13]
CUR F, CURTI G, SESANA R. A new iteration method for the thermographic determination of fatigue limit in steels[J]. International Journal of Fatigue,2005,27(4):453-459.
[14]
李萌, 李旭东, 张辉, 等. 基于锁相红外热成像技术对铝合金铆接结构件疲劳极限的快速测定[J]. 工程力学,2012,29(12):28-33. LI M, LI X D, ZHANG H, et al. Rapid determination of the fatigue limit of aluminum alloy riveted component based on lock-in infrared thermography technique[J]. Engineering Mechanics,2012,29(12):28-33.
[15]
郭杏林, 王晓钢. 基于锁相热像法的金属疲劳特性评估方法研究[J]. 机械强度,2010,32(2):305-309. GUO X L, WANG X G. Research on the evaluation method of metal fatigue properties based on lock-in thermography[J]. Journal of Mechanical Strength,2010,32(2):305-309.
[16]
石亦平, 周玉蓉. ABAQUS有限元分析实例详解[M]. 北京: 机械工业出版社,2007. SHI Y P, ZHOU Y R. Example explanation of finite element analysis of ABAQUS[M]. Beijing:China Machine Press,2007.
[17]
FAN J, GUO X, WU C. A new application of the infrared thermography for fatigue evaluation and damage assessment[J]. International Journal of Fatigue,2012,44:1-7.
[18]
RISITANO A, RISITANO G. Cumulative damage evaluation in multiple cycle fatigue tests taking into account energy parameters[J]. International Journal of Fatigue,2012,48:214-222.
[19]
李光铎, 乔务本. 盲孔对应力分布影响的三维有限元分析[J]. 焊接学报,1989,10(2):111-118. LI G D, QIAO W B. Three dimensional finite elements analysis of the influence of small blind hole on stress distribution[J]. Transactions of the China Welding Institution,1989,10(2):111-118.
[20]
李旭东, 刘勋, 马渊, 等. 锁相红外热成像技术测量结构的应力分布[J]. 工程力学,2011,28(11):218-224. LI X D, LIU X, MA Y, et al. Measuring structure stress distribution using lock-in infrared thermography technique[J]. Engineering Mechanics,2011,28(11):218-224.
[21]
王永茂, 郭兴华, 李日华. 红外检测中的缺陷大小和深度的测量[J]. 激光与红外,2002,32(6):404-406. WANG Y M, GUO X H, LI R H. Measuring defect diameter and depth in infrared testing[J]. Laser & Infrared,2002,32(6):404-406.
[22]
PETERSON R E, PLUNKETT R. Stress concentration factors[J]. Journal of Applied Mechanics,1975,42(1):248.
[23]
王喜丰. 基于红外热像技术的应力分析关键技术研究[D]. 哈尔滨:哈尔滨工业大学,2008.WANG X F. The research on key technology of stress analysis based on infrared thermographic technology[D]. Harbin:Harbin Institute of Technology,2008.
[24]
刘勋. 基于红外锁相热像的复合结构件应力分析及其实验研究[D]. 哈尔滨:哈尔滨工业大学,2012.LIU X. Analysis and experiment study on stress of structure based on lock-in thermography[D]. Harbin:Harbin Institute of Technology,2012.
[25]
MALDAGUE X, MARINETTI S. Pulse phase infrared thermography[J]. Journal of Applied Physics,1996,79(5):2694-2698.
[26]
刘俊岩, 戴景民, 王洋. 红外锁相法热波检测技术及缺陷深度测量[J]. 光学精密工程,2010,18(1):37-44. LIU J Y, DAI J M, WANG Y. Thermal wave detection and defect depth measurement based on lock-in thermography[J]. Optics and Precision Engineering,2010,18(1):37-44.
[27]
樊俊铃, 郭杏林, 赵延广, 等. 定量热像法预测焊接接头的S-N曲线和残余寿命[J]. 材料工程,2011,(12):29-33. FAN J, GUO X, ZHAO Y, et al. Predictions of S-N curve and residual life of welded joints by quantitative thermographic method[J]. Journal of Materials Engineering,2011,(12):29-33.
[28]
王凯, 闫志峰, 王文先, 等. 循环载荷作用下镁合金温度演化及高周疲劳性能预测[J]. 材料工程,2014,(1):85-89. WANG K, YAN Z F, WANG W X, et al. Temperature evolution and fatigue properties prediction for high cycle fatigue of magnesium alloy[J]. Journal of materials Engineering,2014,(1):85-89.
[29]
樊俊铃, 郭杏林, 吴承伟, 等. 热像法和能量法快速评估Q235钢的疲劳性能[J].材料工程,2012,(12):71-76. FAN J L, GUO X L, WU C W, et al. Fast evaluation of fatigue behavior of Q235 steel by infrared thermography and energy approach[J]. Journal of Materials Engineering,2012,(12):71-76.
[30]
赵延广, 郭杏林, 任明法. 含缺陷疲劳试件的锁相红外热成像无损检测[J]. 光学学报,2010,(10):2776-2781. ZHAO Y G, GUO X L, REN M F. Lock-in infrared thermography for the non-destructive testing of fatigue specimen with defects[J]. Acta Optica Sinica,2010,(10):2776-2781.
[31]
胡本润, 刘建中, 陈建峰. 疲劳缺口系数Kf与理论应力集中系数Kt之间的关系[J]. 材料工程,2007,(7):70-73. HU B R, LIU J Z, CHEN J F. Relationship between fatigue notch factor Kf and stress concentration factor Kt[J]. Journal of Materials Engineering,2007,(7):70-73.
[32]
姚卫星. 结构疲劳寿命分析[M]. 北京:国防工业出版社,2003. YAO W X. Fatigue Life Prediction of Structures[M]. Beijing: Defense Industry Press,2003.