全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
同位素  2010 

整合素αⅤβ3非肽类小分子拮抗剂的设计及其在肿瘤显像中的研究进展

, PP. 247-252

Keywords: 整合素αⅤβ3,RGD肽,小分子拮抗剂,肿瘤显像

Full-Text   Cite this paper   Add to My Lib

Abstract:

整合素αⅤβ3在肿瘤血管生成中发挥着重要的作用,肿瘤血管生成又是肿瘤生长和转移的重要环节,由于整合素αⅤβ3的拮抗剂可特异性结合于整合素αⅤβ3,因此用放射性核素对其拮抗剂进行标记并将其应用于肿瘤的显像和靶向治疗,可达到早期发现和抑制肿瘤转移的作用。本文以计算机辅助药物设计在整合素αⅤβ3非肽类小分子拮抗剂设计中的研究现状为重点,对整合素αⅤβ3非肽类小分子拮抗剂的当前研究进展进行综述,展望小分子拮抗剂在未来肿瘤显像中的应用。

References

[1]  Beer AJ, Schwaiger M. Imaging of integrin alphavbeta3 expression[J]. Cancer Metastasis Rev, 2008, 27(4): 631-644.
[2]  Liu ZF, Wang F, Chen X. Integrin αⅤβ3 targeted cancer therapy[J]. Drug Development Research, 69(6): 329-339.
[3]  Dijkgraaf I, Boerman OC. Radionuclide imaging of tumor angiogenesis[J]. Cancer Biother Radiopharm, 2009, 24(6): 637-647.
[4]  黄云鹏. 整合素αⅤβ3在肿瘤血管生成中的作用[J]. 中国肿瘤, 2007, 16(1): 35-38.
[5]  张春丽,杨铭,王荣福. RGD肽与整合素αⅤβ3受体结合的构效关系及放射性标记配体的设计[J]. 肿瘤学杂志,15(1): 76-81.
[6]  刘红洁,王荣福,张春丽,等. 131I标记RGD环肽在荷瘤小鼠体内分布与显像研究[J]. 中国医学影像技术, 2008, 24(1): 131-133.
[7]  Edwards D, Jones P, Haramis H, et al. 99mTc-NC100692——a tracer for imaging vitronectin receptors associated with angiogenesis: a preclinical investigation[J]. Nucl Med Biol, 2008,35(3): 365-375.
[8]  Roed L, Oulie I, McParland BJ, et al. Human urinary excretion of NC100692, a RGDpeptide for imaging angiogenesis[J]. Eur J Pharm Sci, 2009, 37(3-4): 79-83.
[9]  Raguse JD, Gath HJ, Bier J, et al. Cilengitide (EMD 121974) arrests the growth of a heavily pretreated highly vascularised head and neck tumour[J]. Oral Oncol, 2004, 40(2): 228-230.
[10]  Ruoslahti E, Pierschbacher MD. Arg-Gly-Asp: a versatile cell recognition signal[J]. Cell, 1986, 44(4): 517-518.
[11]  Wester HJ, Schottelius M, Scheidhauer K, et al. Comparison of radioiodinated TOC, TOCA and Mtr-TOCA: the effect of carbohydration on the pharmacokinetics[J]. Eur J Nucl Med Mol Imaging, 2002, 29(1): 28-38.
[12]  Chen X, Tohme M, Park R, et al. MicroPET imaging of alphavbeta3integrin expression with 18F-labeled dimeric RGD peptide[J]. Mol Imaging, 2004, 3(2): 96-104.
[13]  Li ZB, Cai W, Cao Q, et al. 64Cu-labeled tetrameric and octameric RGD peptides for smallanimal PET of tumor alpha(Ⅴ) beta(3) integrin expression[J]. J Nucl Med, 2007, 48(7): 1 162-1 171.
[14]  倪广惠,姜凤超. 整合素αⅤβ3拮抗剂的研究进展[J]. 药学学报, 2006, 41(7): 577-582.
[15]  Marinelli L, Lavecchia A, Gottschalk KE, et al. Docking studies on alphaⅤ beta3 integrin ligands: pharmacophore refinement and implications for drug design[J]. J Med Chem, 2003, 46(21): 4 393-4 404.
[16]  Moitessier N, Henry C, Maigret B, et al. Combining pharmacophore search, automated docking, and molecular dynamics simulations as a novel strategy for flexible docking. Proof of concept: docking of arginine-glycine-aspartic acid-like compounds into the alphaⅤ beta3 binding site[J]. J Med Chem, 2004, 47(17): 4 178-4 187.
[17]  Dayam R, Aiello F, Deng J, et al. Discovery of small molecule integrin alphavbeta3 antagonists as novel anticancer agents[J]. J Med Chem, 2006, 49(15): 4 526-4 534.
[18]  程刚英,倪广惠,姜凤超. 整合素αⅤβ3受体拮抗剂药效团模型的研究[J]. 药学学报, 2009, 44(4): 379-385.
[19]  Casiraghi G, Rassu G, Auzzas L, et al. Grafting aminocyclopentane carboxylic acids onto the RGD tripeptide sequence generates low nanomolar alphaⅤ beta3/alphaⅤ beta5 integrin dual binders[J]. J Med Chem, 2005, 48(24): 7 675-7 687.
[20]  Feuston BP, Culberson JC, Duggan ME, et al. Binding model for nonpeptide antagonists of alpha(Ⅴ)beta(3) integrin[J]. J Med Chem, 2002, 45(26): 5 640-5 648.
[21]  Raboisson P, Desjarlais RL, Reed R, et al. Identification of novel short chain 4-substituted indoles as potent alphaⅤ beta3 antagonist using structure-based drug design[J]. Eur J Med Chem, 2007, 42(3): 334-343.
[22]  Chen X, Hou Y, Tohme M, et al. Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET imaging of brain tumor alphavbeta3integrin expression[J]. J Nucl Med, 2004, 45(10): 1 776-1 783.
[23]  纪庆,周圆,彭晖,等. 整合素αⅤβ3小分子抑制剂的设计及活性测定[J]. 中国医学科学院学报,2007,29(3): 347-352.
[24]  Zhou Y, Peng H, Ji Q, et al. Discovery of small molecule inhibitors of integrin αⅤβ3 through structurebased virtual screening[J]. Bioorg Med Chem Lett, 2006, 16: 5 878-5 882.
[25]  Chen X, Park R, Tohme M, et al. MicroPET and autoradiographic imaging of breast cancer αⅤ-integrin expression using 18F- and 64Cu-labeled RGD peptide[J]. Bioconjugate Chem, 2004, 15(1): 41-49.
[26]  Janssen ML, Oyen WJ, Dijkgraaf I, et al. Tumor targeting with radiolabeled alpha(Ⅴ)beta(3) integrin binding peptides in a nude mouse model[J]. Cancer Res, 2002, 62(21): 6 146-6 151.
[27]  Janssen M, Oyen WJ, Massuger LF, et al. Comparison of a monomeric and dimeric radiolabeled RGDpeptide for tumor targeting[J]. Cancer Biother Radiopharm, 2002, 17(6): 641-646.
[28]  Beer AJ, Haubner R, Goebel M, et al. Biodistribution and pharmacokinetics of the alphaⅤ beta3-selective tracer 18F-galacto-RGD in cancer patients[J]. J Nucl Med, 2005, 46(8): 1 333-1 341.
[29]  Schnell O, Krebs B, Carlsen J, et al. Imaging of integrin alpha(v)beta(3) expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomography[J]. Neuro Oncol, 2009, 11(6): 861-870.
[30]  Harris TD, Kalogeropoulos S, Nguyen T, et al. Design, synthesis, and evaluation of radiolabeled integrin alphaⅤ beta3 receptor antagonists for tumor imaging and radiotherapy[J]. Cancer Biother Radiopharm, 2003, 18(4): 627-641.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133