全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
同位素  2011 

中国放射性药物的现状与展望

, PP. 129-139

Keywords: 体内放射性药物,现状,展望

Full-Text   Cite this paper   Add to My Lib

Abstract:

放射性药物不仅可以作为有效的诊断和治疗手段,而且结合单光子断层扫描仪(SPECT)或正电子断层扫描仪(PET),还可以在分子水平上直接研究它们在正常人体(活体)内的功能和代谢过程,实现人体内生理和病理过程的快速、无损和实时成像,为真正意义上的早诊断、早治疗提供新方法和新手段,为预防医学、转化医学、个性化医学的实现提供可能的途径。本文概述了体内放射性药物的最新进展,分析了我国放射性药物的研究现状,提出大力加强医用放射性核素的研制、加强基础放射性药物化学研究、系统开展受体分子显像剂的研究以及开展多模式多功能复合分子探针的研究等建议。

References

[1]  王世真. 我国核医学的现状与展望[J]. 核技术, 1988, 11: 9-16.
[2]  刘伯里, 金昱泰. 中国体内放射性药物的现状与展望[J]. 核化学与放射化学, 1998, 11: 229-235.
[3]  马崇智. 体内放射性药物的发展[J]. 同位素, 1992, 5: 167-192.
[4]  Liu Y, Wu C. Radiolabelling of monoclonal antibodies with metal chelates[J]. Pure Appl Chem, 1991, 64: 427-463.
[5]  Wang X, Wu Y, Wang Y, et al. Radiopharmaceutical chemistry in Peking University[J]. J Nucl Radiochem Sci, 2000, 1: 15.
[6]  罗顺忠, 蒋树斌, 魏洪源. 国内放射性药物研究现状[J]. 高科技与产业化, 2006, (4): 52-53.
[7]  Xia J, Wang Y, Yu J, et al. Synthesis, in vitro and in vivo behavior of 188Re(I)-tricarbonyl complexes for the future functionalization of biomolecules[J]. J Radioanal Nucl Chem, 2008, 275: 325-330.
[8]  张锦荣, 罗志福. 中国放射性同位素技术与应用进展[J]. 中国工程科学, 2008, 10: 61-69.
[9]  Luo Z. The production of medical radioisotopes and radiopharmaceuticals and their applications in PR China[C]//Seventh Japan-China Joint Seminar on Radiopharmaceutical Chemistry (JCSRC 2007). Kyoto, Japan:Kyoto University, 2007: 25-33.
[10]  张锦明, 田嘉禾. 国内正电子放射性药物发展现状简介[J]. 同位素, 2006, 19: 240-245.
[11]  褚泰伟, 张华北, 张俊波, 等. 放射性药物面临的机遇与挑战[J]. 核化学与放射化学, 2009, 31(增刊): 58-63.
[12]  Ametamey SM, Honer M, Schubiger PA. Molecular imaging with PET[J]. Chem Rev, 2008, 108: 1 501-1 516.
[13]  吴晨希,朱朝晖,李方,等. 分子影像:转化医学的重要工具和主要路径[J]. 生物物理学报,2011,27:327-334.
[14]  Bayele HK, Chiti A, Colina R, et al. Isotopic biomarker discovery and application in translational medicine[J]. Drug Discov Today, 2010, 15: 127-137.
[15]  International Atomic Energy Agency. Nuclear Technology Review 2010 [R/OL]. Vienna: IAEA, 2010: 50(2011-03-20).
[16]  Molecular Imaging and Contrast Agent Database (MICAD) [database online]. Bethesda (MD): National Library of Medicine (US) [EB/OL] [2011-04-11].
[17]  Coenen HH, Elsinga PH, Iwata R, et al. Fluorine-18 radiopharmaceuticals beyond [18F]FDG for use in oncology and neurosciences[J]. Nucl Med Biol, 2010, 37: 727-740.
[18]  Wadsak W, Mitterhauser M. Basic and principles of radiopharmaceuticals for PET/CT[J]. Eur J Radiology, 2010, 73: 461-469.
[19]  张锦明,田嘉禾. 11C标记的放射性药物在PET-CT肿瘤诊断上的应用[J]. 国外医学:放射医学核医学分册,2005,29:232-237.
[20]  李彪,朱承谟. 正电子放射性药物的临床应用与进展[J]. 诊断学理论与实践,2005,4:93-96.
[21]  王荣福,刘红洁,张春丽. PET受体显像的研究应用进展[J]. 中国医学影像技术,2006,22:1 599-1 603.
[22]  彭添兴,吴华. 18F-氟脱氧葡萄糖以外新型PET肿瘤显像剂[J]. 国际放射医学核医学杂志,2007,31:9-12.
[23]  Li Z, Conti PS. Radiopharmaceutical chemistry in positron emission tomography[J]. Adv Drug Delivery reviews, 2010, 62: 1 031-1 051.
[24]  Miller PW, Long NG, Vilar R, et al. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography[J]. Angew Chem Int Ed, 2008, 47: 8 998-9 033.
[25]  Van Dort ME, Rehemtulla A, Ross BD. PET and SPECT imaging of tumor biology: new approaches towards oncology drug discovery and development[J]. Current Computer-Aided Drug Design, 2008, 4: 46-53.
[26]  Kumar R, Lal N. PET in anti-cancer drug development and therapy[J]. Recent Pat Anti-Canc, 2007, 2: 259-263.
[27]  Sugiyama Y. Effective use of microdosing and positron emission tomographt (PET) studies on new drug discovery and development[J]. Drug Metab Pharmacokinet, 2009, 24: 127-129.
[28]  Koehler L, Gagnon K, McQuarrie S, et al. Iodine-124: a promising positron emitter for organic PET chemistry[J]. Molecules, 2010, 15: 2 686-2 718.
[29]  Smith SV. Molecular imaging with copper-64[J]. J Inorg Biochem, 2004, 98: 1 874-1 901.
[30]  Wadas TJ, Wong EH, Weisman GR, et al. Copper chelation chemistry and its role in copper radiopharmaceuticals[J]. Current Pharm Design, 2007, 13: 3-16.
[31]  Anderson CJ, Ferdani R. Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research[J]. Cancer Biotherapy and Radiopharmaceuticals, 2009, 24: 379-393.
[32]  Maecke HR, Hofmann M, Haberkorn U. 68Ga-labeled peptides in tumor imaging[J]. J Nucl Med, 2005, 46: 172S-178S.
[33]  Srirajaskanthan R, Kayani I, Quigley AM, et al. The role of 68Ga-DOTATATE PET in patients with neuroendocrine tumors and negative or equivocal findings on 111In-DTPA-octreotide scintigraphy[J]. J Nucl Med, 2010, 51: 875-882.
[34]  Virgolini I, Ambrosini V, Bomanji JB, et al. Procedure guidelines for PET/CT tumor imaging with 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DO-TA-TATE[J]. Eur J Nucl Med Mol Imaging, 2010, 37: 2 004-2 010.
[35]  Zolle I, Eds. Technetium-99m pharmaceuticals: preparation and quality control in nuclear medicine[M]. Springer Berlin Heidelberg, 2007.
[36]  Technetium-99m radiopharmaceuticals: manufacture of Kits[R]. IAEA Technical Reports. Series No. 466. Vienna: IAEA, 2008.
[37]  Domenico GDI, Zavattini G. Chapter 4 advances in SPECT instrumentation (including animal scanners)[C]//International Atomic Energy Agency. Technetium-99m Radiopharmaceuticals: status and trends. IAEA Radioisotopes and Radiopharmaceuticals. Series No. 1. Vienna: IAEA, 2009: 57-90.
[38]  Bach-Gansmo T, Danielsson R, Saracco A, et al. Integrin receptor imaging of breast cancer: A proof-of-concept study to evaluate Tc-99m-NC100692[J]. J Nucl Med, 2006, 47: 1 434-1 439.
[39]  Axelsson R, BachGansmo T, Castell-Conesa J, et al. An open-label, multicenter, phase 2a study to assess the feasibility of imaging metastases in late-stage cancer patients with the a alpha(v)beta(3)-selective angiogenesis imaging agent Tc-99m-NC100692[J]. Acta Radiol, 2010, 51: 40-46.
[40]  Hao GY, Zang JY, Zhu L,et al. Synthesis, separation and biodistribution of 99Tcm-CO-MIBI complex[J]. J Label Compd Radiopharm, 2004, 47: 513-521.
[41]  王金城,刘伯里,米宏志,等. 心肌显像剂[99Tcm(CO3(MIBI3]+和99Tcm-MIBI药理实验对比研究[J]. 中华核医学杂志,2002,22:231-232.
[42]  Liu G, Liu B. Synthesis of a new polyaminopolycarboxybic acid (BPHA) and labeling with 99Tcm [J]. J labelled Compds Radiopharm, 1998, XL1: 97-104.
[43]  Miao Y, Liu B. Synthesis of new N2S ligands, preparation of 99Tcm complexes and their preliminary biodistribution in mice[J]. J labelled Compds Radiopharm, 1999, 42: 629-640.
[44]  Zhang J, Wang X, Lu G, et al. Synthesis, characterization and biodistribution of a 99Tcm nitrido complex as a potential brain perfusion imaging agent[J]. J Labelled Compd Radiopharm, 2000, 43: 693-700.
[45]  Zhang J, Guo H, Zhang S, et al. Synthesis and biodistribution of a novel 99TcmN complex of ciprofloxacin dithiocarbamate as a potential agent for infection imaging[J]. Bioorg Med Chem Lett, 2008, 18: 5 168-5 170.
[46]  Zhang J, Zhang S, Guo H, et al. Synthesis and biological evaluation of a novel 99Tcm (CO3 complex of ciprofloxacin dithiocarbamate as a potential agent to target infection[J]. Bioorg Med Chem Lett, 2010, 20: 3 781-3 784.
[47]  Zhang S, Zhang W, Wang Y, et al. Synthesis and biodistribution of a novel 99TcmN complex of norfloxacin dithiocarbamate as a potential agent for bacterial infection imaging[J]. Bioconj Chem, 2011, 22: 369-375.
[48]  毛一雷,董一女,杨文江,等. 肝细胞受体显像剂的制备及其药盒化[J]. 同位素,2008,21:88-94,128.
[49]  Yang W, Mou T, Shao G, et al. Copolymer-based hepatocyte asialoglycoprotein receptor targeting agent for SPECT [J]. J Nucl Med, 2011, 52: 978-985.
[50]  Wei Y, Liu BL, Kung HF. Quantitative study of the structure-stability relationship of Tc complexes[J]. Appl Radiat Isot, 1990, 41: 763-771.
[51]  Kung HF, Liu Boli, Wei Y, et al. Quantitative study of the structure-stability relationship of technetium oxide [TcVO(Ⅲ)] complexes[J]. Appl Radiat Isot, 1990, 41: 773-781.
[52]  Liu Boli, Jia Hongmei. Quantitative study of brain retention mechanism of 99TcmO chelates[J]. J Labelled Compds Radiopharm, 1995, 37: 788.
[53]  孟昭兴,贾红梅,杨文,等. 锝化学研究Ⅹ: 99Tcm标记的N2S2类脑显像剂构效关系的研究[J]. 核化学与放射化学,1998,20(1):14-19.
[54]  Jia H, Ma X, Wang C, et al. Solvent effects on brain uptake of isomers of 99mTc-brain radiopharmaceuticals[J]. Chinese Science Bulletin, 2002, 47(21): 1 786-1 791.
[55]  Jia HM, Fang DC, Feng Y, et al. The interconversion mechanism between TcO3+ and TcO2+ core of 99Tcm labeled amine-oxime(AO)complexes[J]. Theoretical Chemistry Account, 2008, 121: 271-278.
[56]  Yu L, Fang DC, Ren HY, et al. Ligand exchange mechanism of fac[99Tcm(CO3(H2O3]+ complexes for 99Tcm-CO-MIBI radiopharmaceuticals[C]// Technetium and Other Radiometals in Chemistry and Medicine. Mazzi U, Eckelman WC, Volkert WA, Eds. Padova, Italy: SGE Editoriali, 2011: 339-340.
[57]  邓新荣,刘飞,罗志福. 123I放射性药物简介[J]. 中华核医学杂志,2007,27:189-190.
[58]  Yamashina S, Yamazaki J. Neuronal imaging using SPECT[J]. Eur J Nucl Med Mol Imaging, 2007, 34: 939-950.
[59]  Ross SA, Seibyl JP. Research applications of selected 123I-labeled neuroreceptor SPECT imaging ligands[J]. J Nucl Med Technol, 2004, 32: 209-214.
[60]  Varrone A, halldin C. Molecular imaging of the dopamine transporter[J]. J Nucl Med, 2010, 51: 1 331-1 334.
[61]  Schottelius M, Wester HJ. Molecular imaging targeting peptide receptors[J]. Methods, 2009, 48: 161-177.
[62]  Tweedle MF. Peptide-targeted diagnostics and radiotherapeutics[J]. Accounts of Chemical Research, 2009, 42: 958-968.
[63]  Correia JDG, Paulo A, Raposinso PD, et al. Radiometallated peptides for molecular imaging and targeted therapy[J]. Dalton Trans, 2011, 40: 6 144-6 167.
[64]  International Atomic Energy Agency. Comparative evaluation of therapeutic radiopharmaceuticals[R]. IAEA technical reports. Series No. 458. Vienna: IAEA, 2007.
[65]  段润卿,刘兴党. 177Lu标记放射性药物研究新进展[J]. 中华核医学杂志,2010,30(3):139-141.
[66]  邓新荣,李洪玉,叶肇云,等.177Lu-EDTMP和177Lu-DOTMP的制备及其生物分布[J]. 同位素,2009,22(2):71-75.
[67]  李洪玉,梁积新,向学琴,等. 177Lu-EDTMP的药盒法制备、大鼠体内生物分布及显像[J].同位素,2010,23(2):65-70.
[68]  陈永祥,陈家华. 放射性粒子近距离治疗肿瘤研究进展[J]. 河北医药,2006,28:1 093-1 094.
[69]  李忠勇,高惠波,金小海,等. 近距离治疗肿瘤的放射性粒子研究进展[J]. 同位素,2011, 24:118-123.
[70]  马俊刚,王阁,倪蓉晖,等. 125I放射性粒子植入联合三维适形放疗治疗局部非小细胞肺癌的疗效[J]. 现代肿瘤医学,2010,18:2 390-2 392.
[71]  曹贵文,崔新江,宁厚法,等. 125I放射性粒子治疗高位胆管癌的临床研究[J]. 中国介入放射学,2009,3(1):37-40.
[72]  曹贵文,崔新江,宁厚法,等. 125I放射性粒子永久性植入术用于32例高位胆管癌效果观察[J]. 山东医药,2010,50:92-93.
[73]  张云峰,曹贵文,崔新江,等. TACE与125I放射性粒子植入序贯治疗HCC的临床研究[J]. 医学影像学杂志,2010,20:1 377-1 380.
[74]  张惠洁,郭卫东. 放射性粒子组织间插植治疗恶性肿瘤[J]. 疾病监测与控制杂志,2008,2:156-157.
[75]  曾明喜. 吉西他滨联合125I放射性粒子植入治疗老年非小细胞肺癌的临床分析[J]. 中国医学创新,2010,7:90-91.
[76]  Oyen WJG, Bodei L, Giammarile F, et al. Targeted therapy in nuclear medicine-current status and future prospects[J]. Annals of Oncology, 2007, 18: 1 782-1 792.
[77]  Srivastava SC. Theragnostic radiometals: getting closer to personalized medicine[C]// Technetium and Other Radiometals in Chemistry and Medicine. Mazzi U, Eckelman WC, Volkert WA, Eds. Padova, Italy: SGE Editoriali, 2011: XXXV-XLIV.
[78]  Robertson R, Germanos MS, Li C, et al. Optical imaging of Cerenkov light generation from positron-emitting radiotracers[J]. Phys Med Biol, 2009, 54: N355-365.
[79]  Liu H, Ren G, Miao Z, et al. Molecular optical imaging with radioactive probes[J]. Plos One, 2010, 5: e9 470.
[80]  Hu Z, Liang J, Yang W, et al. Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation[J]. Optics Express, 2010, 18: 24 441-24 450.
[81]  Alberto R. Chapter 17 Future trends in the development of technetium radiopharmaceuticals[C]//International Atomic Energy Agency. Technetium-99m Radiopharmaceuticals: status and trends. IAEA Radioisotopes and Radiopharmaceuticals. Series No. 1. Vienna: IAEA, 2009: 347-358.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133