全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
同位素  2015 

18F标记正电子分子探针在肿瘤受体显像的应用

DOI: 10.7538/tws.2015.28.02.0121, PP. 121-128

Keywords: 肿瘤受体,正电子分子探针,18F标记,分子影像

Full-Text   Cite this paper   Add to My Lib

Abstract:

肿瘤受体显像具有高亲和性、高特异性、高选择性及良好的药代动力学特性,在肿瘤的诊断和分期中具有重要作用。本文根据不同的肿瘤受体,对生长抑素(SST)受体、血管活性肠肽(VIP)受体、肿瘤生长因子受体、类固醇激素(SH)受体类肿瘤受体显像剂的18F标记的正电子分子探针进行了综述。

References

[1]  王荣福. PET/CT—分子影像学新技术应用[M]. 北京:北京大学医学出版社,2011:255-271.
[2]  Reichlin S. Somatostatin.1[J]. N Engl J Med, 1983, 309(24): 1495-1501.
[3]  Schulz S, Schmitt J, Quednow C, et al. Immunohistochemical detection of somatostatin receptors in human ovarian tumors[J]. Gynecol Oncol, 2002, 84(2): 235-240.
[4]  Rufini V, Calcagni M L, Baum RP. Imaging of neuroendocrine tumors[J]. Semin Nucl Med, 2006, 36(3): 228-247.
[5]  Meisetschlager G, Poethko T, Stahl A, et al. Gluc-Lys( F-18 FP)-TOCA PET in patients with SSTR-positive tumors: Biodistribution and diagnostic evaluation compared with In-111 DTPA-octreotide[J]. J Nucl Med, 2006, 47(4): 566-573.
[6]  Schottelius M, Wester H J, Reubi J C, et al. Improvement of pharmacokinetics of radioiodinated Tyr(3)-octreotide by conjugation with carbohydrates[J]. Bioconjug Chem, 2002, 13(5): 1021-1030.
[7]  Laverman P, McBride W J, Sharkey R M, et al. A Novel Facile Method of Labeling Octreotide With 18F-Fluorine[J]. J Nucl Med, 2010, 51(3): 454-461.
[8]  McBride W J, D Souza C A, Sharkey R M, et al. Improved F-18 Labeling of Peptides with a Fluoride Aluminum Chelate Complex[J]. Bioconjugate Chem, 2010, 21(7): 1331-1340.
[9]  Iddon L, Leyton J, Indrevoll B, et al. Synthesis and in vitro evaluation of F-18 fluoroethyl triazole labelled Tyr(3) octreotate analogues using click chemistry[J]. Bioorg Med Chem Lett, 2011, 21(10): 3122-3127.
[10]  Leyton J, Iddon L, Perumal M, et al. Targeting Somatostatin Receptors: Preclinical Evaluation of Novel F-18-Fluoroethyltriazole-Tyr(3)-Octreotate Analogs for PET[J]. J Nucl Med, 2011, 52(9): 1441-1448.
[11]  Ishihara T, Shigemoto R, Mori K, et al. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide[J]. Neuron, 1992, 8(4): 811-819.
[12]  Szilasi M, Buglyo A, Treszl A, et al. Gene expression of vasoactive intestinal peptide receptors in human lung cancer[J]. Int J Oncol, 2011, 39(4): 1019-1024.
[13]  Fernandez Martinez AB, Carmena MJ, Arenas MI, et al. Overexpression of vasoactive intestinal peptide receptors and cyclooxygenase-2 in human prostate cancer. Analysis of potential prognostic relevance[J]. Histol Histopath, 2012, 27(8): 1093-1101.
[14]  Rangger C, Helbok A, Ocak M, et al. Design and Evaluation of Novel Radiolabelled VIP Derivatives for Tumour Targeting[J]. Anticancer Res, 2013, 33(4): 1537-1546.
[15]  Cheng D F, Yin D Z, Li G C, et al. Radiolabeling and in vitro and in vivo characterization of F-18 FB R-8, R-15, R-21, L-17 -VIP as a PET imaging agent for tumor overexpressed VIP receptors[J]. Chem Biol Drug Des, 2006, 68(6): 319-325.
[16]  Cheng DF, Yin DZ, Zhang L, et al. Preparation of the novel fluorine-18-labeled VIP analog for PET imaging studies using two different synthesis methods[J]. J Fluor Chem, 2007, 128(3): 196-201.
[17]  Cheng D F, Liu Y X, Shen H, et al. F-18 Labeled Vasoactive Intestinal Peptide Analogue in the PET Imaging of Colon Carcinoma in Nude Mice[J]. Biomed Research International, 2013.
[18]  Wieduwilt M J, Moasser M M. The epidermal growth factor receptor family: biology driving targeted therapeutics[J]. Cell Mol Life Sci, 2008, 65(10): 1566-1584.
[19]  Chung C H, Ely K, McGavran L, et al. Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas[J]. J Clin Oncol, 2006, 24(25): 4170-4176.
[20]  Bonasera T A, Ortu G, Rozen Y, et al. Potential 18F-labeled biomarkers for epidermal growth factor receptor tyrosine kinase[J]. Nucl Med Biol, 2001, 28(4): 359-374.
[21]  Pantaleo M, Mishani E, Nanni C, et al. Evaluation of modified PEGanilinoquinazoline derivatives as potential agents for EGFR imaging in cancer by small animal PET[J]. Mol maging Biol, 2010, 12(6): 616-625.
[22]  Pal A, Balatoni J, Mukhopadhyay U, et al. Radiosynthesis and initial in vitro evaluation of [18F]FPEG-IPQA a novel PET radiotracer for imaging EGFR expression-activity in lung carcinomas[J]. Mol Imaging Biol, 2011, 13(5): 853-861.
[23]  Kobus D, Giesen Y, Ullrich R, et al. A Fully Automated Two-Step Synthesis of An18F-Labelled Tyrosine Kinase Inhibitor for EGFR Kinase Ativity Imaging in Tumors[J]. Appl Radiat Isot, 2009, 67: 1977-1984.
[24]  Pisaneschi F, Nguyen Q D, Shamsaei E, et al. Development of A New Epidermal Growth Factor Receptor Positron Emission Tomography Imaging Agent Based on the 3-Cyanoquinoline Core: Synthesis and Biological Evaluation[J]. Bioorg Med Chem, 2010, 18(18): 6634-6645.
[25]  Denholt C L, Binderup T, Stockhausen M T, et al. Evaluation of 4- F-18 fluorobenzoyl-FALGEA-NH2 as a positron emission tomography tracer for epidermal growth factor receptor mutation variant Ⅲ imaging in cancer[J]. Nucl Med Biol, 2011, 38(4): 509-515.
[26]  Li W H, Niu G, Lang L X, et al. PET imaging of EGF receptors using F-18 FBEM-EGF in a head and neck squamous cell carcinoma model[J]. Eur J Nucl Med Mol Imaging, 2012, 39(2): 300-308.
[27]  Miao Z, Ren G, Liu H G, et al. PET of EGFR Expression with an F-18-Labeled Affibody Molecule[J]. J Nucl Med, 2012, 53(7): 1110-1118.
[28]  Cai W B, Chen X Y. Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression[J]. Frontiers in Bioscience, 2007, 12: 4267-4279.
[29]  Aricò A, Giantin M, Gelain M E, et al. The role of vascular endothelial growth factor and matrix metalloproteinases in canine lymphoma: in vivo and in vitro study[J]. BMC Vet Res, 2013, 9: 94.
[30]  Ma C Y, Li Y, Zhang X F, et al. Levels of vascular endothelial growth factor and matrix metalloproteinase-9 proteins in patients with glioma[J]. Int Med Res, 2014, 42(1): 198-204.
[31]  Kniess T, Bergmann R, Kuchar M, et al. Synthesis and radiopharmacological investigation of 3-[4′-[18F]fluorobenzylidene]-indolin-2-one as possible tyrosine kinase inhibitor[J]. Bioorg Med Chem, 2009, 17(22): 7732-7742.
[32]  Ilovich O, Jacobson O, Aviv Y, et al. Formation of fluorine-18 labeled diaryl ureas-labeled VEGFR-2/PDGFR dual inhibitors as molecular imaging agents for angiogenesis[J]. Bioorg Med Chem, 2008, 16(8): 4242-4251.
[33]  Wang H, Gao H K, Guo N, et al. Site-Specific Labeling of scVEGF with Fluorine-18 for Positron Emission Tomography Imaging[J]. Theranostics, 2012, 2(6): 607-617.
[34]  Mankoff D A, Tewson T J, Eary J F. Analysis of blood clearance and labeled metabolites for the estrogen receptor tracer [F-18]-16α-fluoroestradiol (FES)[J]. Nucl Med Biol, 1997, 24(4): 341-348.
[35]  Linden H M, Stekhova S A, Link J M, et al. Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer[J]. J Clin Oncol, 2006, 24(18): 2793-2799.
[36]  Peterson L M, Mankoff D A, Lawton T, et al. Quantitative imaging of estrogen receptor expression in breast cancer with PET and18F-fluoroestradiol[J]. J Nucl Med, 2008, 49(10): 367-374.
[37]  van Kruchten M, Glaudemans A W, de Vries EF, et al. PET Imaging of Estrogen Receptors as a Diagnostic Tool for Breast Cancer Patients Presenting with a Clinical Dilemma[J]. J Nucl Med, 2012, 53(2), 182-190.
[38]  Fowler A M, Chan S R, Sharp T L, et al. Small-Animal PET of Steroid Hormone Receptors Predicts Tumor Response to Endocrine Therapy Using a Preclinical Model of Breast Cancer[J]. J Nucl Med, 2012, 53(7): 1119-1126.
[39]  Jonson S D, Bonasera T A, Dehdashti F, et al. Comparative breast tumor imaging and comparative in vitro metabolism of 16-[18F]fluoroestradiol-17 and 16-[18F]fluoromoxestrol in isolated hepatocytes[J]. Nucl Med Biol, 1999, 26(1): 123-130.
[40]  Zeelen F J, Vandenbroek A J. Synthesis of 16α-ethyl-21-hydroxy-19-norpregn-4-ene-3, 20-dione (Org 2058)[J]. Recueil Des Travaux Chimiques Des Pays-Bas-Journal of the Royal Netherlands Chemical Society, 1985, 104(9): 239-242.
[41]  Dehdashti F, McGuire A H, Vanbrocklin H F, et al. Assessment of 21-[18F]fluoro-16α-ethyl-19-norprogesterone as a positron emitting radiopharmaceutical for the detection of progestin receptors in human breast carcinomas[J]. J Nucl Med, 1991, 32(8): 1532-1537.
[42]  Lee J H, Zhou H B, Dence C S, et al. Development of [F-18]fluorinesubstituted Tanaproget as a progesterone receptor imaging agent for positron emission tomography[J]. Bioconjug Chem, 2010, 21(6): 1096-1104.
[43]  Dehdashti F, Laforest R, Gao F, et al. Assessment of Progesterone Receptors in Breast Carcinoma by PET with 21-18F-Fluoro-16alpha,17alpha-[(R)-(1′-alphafurylmethylidene)Dioxy]-19-Norpregn-4-Ene-3, 20-Dione[J]. J Nucl Med, 2012, 53(3): 363-370.
[44]  Fowler A M, Chan S R, Sharp T L, et al. Small-Animal PET of Steroid Hormone Receptors Predicts Tumor Response to Endocrine Therapy Using a Preclinical Model of Breast Cancer[J]. J Nucl Med, 2012, 53(7), 1119-1126.
[45]  Liu A J, Katzenellenbogen J A, VanBrocklin HF, et al. 20-[18F]fluoromibolerone, a positron-emitting radiotracer for androgen receptors: synthesis and tissue distribution studies[J]. J Nucl Med, 1991, 32(1): 81-88.
[46]  Liu A, Dence C S, Welch M J, et al. Fluorine-18-labeled androgens: radiochemical synthesis and tissue distribution studies on six fluorine-substituted androgens, potential imaging agents for prostatic cancer[J]. J Nucl Med, 1992, 33(5): 724-734.
[47]  Larson S M, Morris M, Gunther I, et al. Tumor localization of 16b-18F-fluoro-5a-dyhidrotestosterone versus18F-FDG in patients with progressive, metastatic prostate -cancer[J].J Nucl Med, 2004, 45(3): 366-373.
[48]  Dehdashti F, Picus J, Michalski J M, et al. Positron tomographic assessment of androgen receptors in prostatic carcinoma[J]. Eur J Nucl Med Mol Imag, 2005, 32(3): 344-350.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133