Ichiro Yamamoto, Akira Kanagawa. Possibility of remarkable enhancement of separation factor by "cryogenic-wall" thermal diffusion column[J]. Journal of Nuclear Science and Technology, 1999, 27(3): 250-255.
[2]
Young JS, Sherman RH, Willms RS, et al. Steady-state computer modeling of a recent H-D-T cryogenic distillation experiment at TSTA[J]. Fusion Science and Technology, 2002, 41: 1 131-1 136.
[3]
Gillespie LJ, Downs WR. The palladium-deuterium equilibrium[J]. J Am Chem Soc, 1939, 61: 2 496-2 502.
[4]
Sieverts A, Danz W. The electrical resistance and magnetic susceptibility of palladium wire charged with deuterium.[J] Z Phys Chem, 1937, 38B: 46-61.
[5]
Glueckauf E, Kitt GP. Gas chromatographic separation of hydrogen isotopes[J]. 2008,21(1):40-45.
[6]
Hoy JE. Tritium enrichment by gas-solid chromatography: technique for low-level analysis[J]. science, 1968, 161: 464-465.
[7]
Tistchenko S, Dirian G. Natural tritium enrichment for analyses by means of palladium frontal chromatography[J]. Bull Soc Chim France, 1970, 1: 16-18.
[8]
Andreev BM, Perevezentsev AN, Yasenkov VI. Russ J Phys Chem, 1981, 55: 232.
[9]
Andreev BM, Polevoi AS, Perevezentsev AN. Radiokhimia, 1986, 28: 489.
[10]
Botter F, Leger D, Darras R. Separation and applications of stable isotopes[J]. Bull Inform Sci Technol(Paris), 1973, 183: 25-35.
[11]
Botter F, Gowman J, Hemmerich JL, et al. The gas chromatographic isotope separation on system for the JET active gas handling plant[J], Fus Technol, 1988, 14: 562-566.
[12]
Embury MC, Ellefson RE, Melke HB, et al. Efficient palladium isotope chromatograph for hydrogen (EPIC)[J]. Fus Techol, 1992, 21: 960-965.
[13]
Weaver K, Hamrin CE. Separation of hydrogen isotopes by heatless adsorption[J]. Chem Eng Sci, 1974, 29: 1 873-1 882.
[14]
Horen AS, Lee MW. Metal hydride based isotope separation[J]. Fus Technol, 1992, 21: 282-286.
Andreev BM, Perevezentsev AN, Selivanenko IL. Separation of binary isotopic mixtures in counterflow separation column[J]. Atomic energy, 1998, 84(3): 186-189.
[18]
Andreev BM, Magomedbekov EP, Sicking GH. Interaction of hydrogen isotopes with transition metal and intermetallic compounds,Springer Tracts in modern physics volume 132[M].Berlin, Germany: Springer-Verlag Berlin Heidelberg,1996.
[19]
Golubkov AN,Vedeneev AI,Tenyaev BN, et al. Counterflow hyrogen isotope separation facility-data on tritium activities[J]. Fusion Engineering and Design, 2000, (4950): 825-829.
[20]
Scogin JH, Poore AS. Startup and operation of a metal hydride based isotope separation Process [J]. Fusion Technology, 1995, 28: 736-741.
[21]
Ducret D, Laquerbe C, Ballanger A, et al. Separation of hydrogen isotopes by thermal cycling absorption process: an experimental device[J]. Fusion science and technology, 2002, 41: 1 092-1 096.
[22]
Morimoto Y, Kojima S, Sasaki T, et al. Development of a tritium separation process using SDGC[J]. Fusion Engineering and Design, 2006, 81: 821-826.
Rutherford WM, Ellis RE, Abell GC. Supported palladium materials for isotope separation[R]. MLM-3469.Mound:Monsanto research corporation, 1988.
[26]
Melius CF, Foltz GW. Modeling of temporal behavior of isotopic exchange between gaseous hydrogen and palladium hydride powder[R]. SAND86-8244. California: Sandia National Laboratories, 1987.
[27]
Foltz GW, Melius CF. Realtime experimental measurements of isotopic exchange between gaseous hydrogen and palladium hydride powder[R].SAND86-8225. California: Sandia National Laboratories, 1987.
[28]
Staack GC. HT TCAP loading results for the tritium facility modernization and consolidation project(S-7726)[R]. Aiken, SC : Savannah River Site, 2002.
[29]
Heung LK, Staack GC, Klein JE. Tests of isotopic separation efficiency of palladium packed columns[J]. Fusion Science and Technology, 2008, 54: 391394.
[30]
Shanahan KL, Holder JS, Werner JR. Tritium aging effects in palladium on kieselguhr[J]. Journal of Alloys and Compounds, 1999, 293-295: 62-66.
[31]
AriasAA, Schmierer EN, Donald Gettemy, et al. Thermal cycling absorption process(TCAP): Instrument and simulation development status at los alamos national laboratory[J]. Fusion Science and Technology, 2005, 48: 159-162.
[32]
Botter F, Menes J, Tistchenko S, et al. Chromatographies fronale et dedeplacement de dande des isotopes de l’hydrogene sur palladium[R]. Valduc: CEA, 1965.
[33]
Francoise Strzelczyk, Didier Leterq, WilhelmnAM, et al. Gas-solid chrmatographic separation of hydrogen isotopes: a comparison between two palladium bearing materials-alumina and kieselguhr[J]. Journal of Chromatography A, 1998, 822: 326-331.
[34]
Laquerbe C, Ducret D, Ballanger A, et al. Optimization of a thermal cycling absorption process design by dynamic simulation[J]. Fusion Science and Technology, 2002, 41: 1 121-1 125.
[35]
Laquerbe C, Contreras S, Baudouin O, et al. Modelling aging effects on a thermal cycling absorption process column[J]. Fusion Science and Technology, 2008, 54: 403-406.
[36]
Laquerbe C, Contreras S, Demoment J. HDT mixtures treatment stragegies by gas chromatography[J]. Fusion Science and Technology, 2008, 54: 395-398.
[37]
Satoshi Fukada, Hiroshi Fujiwara. Possibility of separation of deuterium from natural hydrogen by a palladium particle bed[J]. Separation Science and Technology, 1999, 34(11): 2 235-2 242.
[38]
Hiroshi Fujiwara, Satoshi Fukada, Samsun Baharin Bin Mohamad, et al. Hydrogen isotope separation by self-displacement chromatography using palladium particles[J]. Journal of Nuclear Science and Technology, 2000, 37(8): 724-726.
[39]
Satoshi Fukada, Samsun Baharin Bin Mohamad, Hiroshi Fujiwara, et al. Hydrogen isotope enrichment using multi-column palladium bed[J]. Fusion Science and Technology, 2002, 41: 1 082-1 086.
[40]
Hiroshi Fujiwara, Satoshi Fukada, Yasuko Yama-guchi. Hydrogenating rates of twin columns packed with Pd and molecular sieve with an alternately counter-current flow for hydrogen isotope separation[J]. International Journal of hydrogen energy, 2000, 25: 127-132.
[41]
Heung LK, Sessions HT, Xiao S. TCAP hydrogen isotope separation using palladium and inverse columns[R]. SRNL-STI-2010-00033. Aiken, SC : Savannah River National Lab, 2002.
[42]
Kuniaki Watanabe, Masao Matsuyama, Tohru Kobayashi, et al. Gas chromatographic separation of H2D2 mixtures by PdPt alloy near room temperature[J]. Journal of Alloys and Compounds, 1997, 257: 278-284.
[43]
UedaS, Nanjou Y, Itoh T, et al. Development of advanced column material for hydrogen isotope separation at room temperature[J]. Fusion Science and Technology, 2002, 41: 1 146-1 150.
[44]
Hara M, Shima H, Akamaru S, et al. A new kind of column materials for gas chromatographic hyrogen isotope separation[J]. Fusion Science and Technology, 2005, 48: 144-147.
Li Gan, Lu Guangda, Jiang Guoqiang. The displacement of hydrogen-deuterium at high flow rate in palladium particle bed[J]. Fusion Science and Technology, 2002, 41: 1 112-1 115.
KotohK, Tanaka M, Takashima S, et al. Verification of hydrogen isotope separation/enrichment by pressure swing adsorption process: successive enrichment of deuterium using SZ5A column[J]. Fusion Engineering and Design, 2010, 85: 1 992-1 998.
[50]
Kotoh K, Kimura K, Nakamura Y, et al. Hydrogen-isotope separation using molecular sieve of synthetic zeolite 3A[J]. Fusion Science and Technology, 2008, 54: 419-422.
[51]
KotohK, Takashima S, Nakamura Y. Molecularsieving effect of zeolite 3A on adsorption of H2, HD and D2[J]. Fusion Engineering and Design, 2009, 84: 1 108-1 112.