Strauss LG, Koczan D, Klippel S, et al. Impact of cell-proliferation-associated gene expression on 2-deoxy-2-[18F]fluoro-D-glucose (FDG) kinetics as measured by dynamic positron emission tomography (dPET) in colorectal tumors[J]. Mol Imaging Biol, 2011, 13(6): 1 290-1 300.
[2]
Dimitrakopoulou-Strauss A, Strauss LG, Egerer G, et al. Prediction of chemotherapy outcome in patients with metastatic soft tissue sarcomas based on dynamic FDG PET (dPET) and a multiparameter analysis[J]. Eur J Nucl Med Mol Imaging, 2010, 37(8): 1 481-1 489.
[3]
Petrirena GJ, Goldman S, Delattre JY. Advances in PET imaging of brain tumors: a referring physician’s perspective[J]. Curr Opin Oncol, 2011, 23(6): 617-623.
[4]
Nanni C, Fantini L, Nicolini S, et al. Non FDG PET[J]. Clin Radiol, 2010, 65(7): 536-548.
Basu S, Kwee TC, Surti S, et al. Fundamentals of PET and PET/CT imaging[J]. Ann N Y Acad Sci, 2011, 1 228: 1-18.
[7]
Almuhaideb A, Papathanasiou N, Bomanji J. 18F-FDG PET/CT imaging in oncology[J]. Ann Saudi Med, 2011, 31(1): 3-13.
[8]
Vallabhajosula S, Solnes L, Vallabhajosula B. A broad overview of positron emission tomography radiopharmaceuticals and clinical applications: what is new? [J]. Semin Nucl Med, 2011, 41(4): 246-264.
[9]
Sols A, Crane RK. Substrate specificity of brain hexokinase[J]. J Biol Chem, 1954, 210(2): 581-595.
[10]
Welch MJ, Redvanly CS. Handbook of radiopharmaceuticals radiochemistry and applications[M]. John Wiley & West Sussex, 2003: 307-321.
[11]
Reivich M, Kuhl D, Wolf A, et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man[J]. Circ Res, 1979, 44(1): 127-137.
[12]
Gallagher BM, Ansari A, Atkins H, et al. Radiopharmaceuticals ⅩⅩⅦ. 18F-labeled 2-deoxy-2-fluoro-D-glucose as a radiopharmaceutical for measuring regional myocardial glucose metabolism in vivo: tissue distribution and imaging studies in animals[J]. J Nucl Med, 1977, 18(10): 990-996.
[13]
Yonekura Y, Benua RS, Brill AB, et al. Increased accumulation of 2-deoxy-2-[18F]fluoro-D-glucose in liver metastases from colon carcinoma[J]. J Nucl Med, 1982, 23(12): 1 133-1 137.
[14]
Adamson J, Foster AB, Hall LD, et al. Fluorinated carbohydrates: Part Ⅲ. 2-deoxy-2-fluoro-D-glucose and 2-deoxy-2-fluoro-D-mannose[J]. Carbohydr Res, 1970, 15(3): 351-359.
[15]
MacGregor RR, Fowler JS, Wolf AP, et al. A synthesis of 2-deoxy-D-[1-11C]glucose for regional metabolic studies: concise communication[J]. J Nucl Med, 1981, 22(9): 800-803.
[16]
Ido T, Wan C-N, Casella V, et al. Labeled 2-deoxy-D-glucose analogs 18F-labeled-2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2deoxy-2-fluoro-D-glucose[J]. J Labelled Compd Radiopharm, 1978, 14(2): 175-183.
[17]
Shiue CY, Salvadori PA, Wolf AP, et al. A new improved synthesis of 2-deoxy-2-[18F]fluoro-D-glucose from 18F-labeled acetyl hypofluorite[J]. J Nucl Med, 1982, 23(10): 899-903.
[18]
Levy S, Elmaleh DR, Livni E. A new method using anhydrous [18F]fluorine to radiolabel 2-[18F]fluoro-2-deoxy-D-glucose[J]. J Nucl Med, 1982, 23(10): 918-922.
[19]
Tewson TJ. Synthesis of no-carrier-added fluorine-18 2-fluoro-2-deoxy-D-glucose[J]. J Nucl Med, 1983, 24(8): 718-721.
[20]
Hamacher K, Coenen HH, Stcklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution[J]. J Nucl Med, 1986, 27(2): 235-238.
[21]
Lemaire C, Damhaut P, Lauricella B, et al. Fast [18F]FDG synthesis by alkaline hydrolysis on a low polarity solid phase support[J]. J Labelled Compd Radiopharm, 2002, 45(5): 435-447.
[22]
Toorongian SA, Mulholland GK, Jewett DM, et al. Routine production of 2-deoxy-2-[18F]fluoro-D-glucose by direct nucleophilic exchange on a quaternary 4-aminopyridinium resin[J]. Int J Rad Appl Instrum B, 1990, 17(3): 273-279.
[23]
Mathiessen B, Jensen ATI, Zhuravlev F. Homogeneous nucleophilic radiofluorination and fluorination with phosphazene hydrofluorides[J]. Chem Eur J, 2011, 17(28): 7 796-7 805.
[24]
Simpson M, Trembleau L, Cheyne RW, et al. One-pot production of 18F-biotin by conjugation with 18F-FDG for pre-targeted imaging: synthesis and radio-labelling of a PEGylated precursor[J]. Appl Radiat Isotopes, 2011, 69(2): 418-422.
[25]
Hultsch C, Schottelius M, Auernheimer J, et al. 18F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK) [J]. Eur J Nucl Med Mol Imaging, 2009, 36(9): 1 469-1 474.
[26]
Chirakal R, Girard L, Firnau G, Garnett E S, Rodrigues G, McCarry B. Synthesis of 2-[18F]FDG using microwave radiation[J]. J Labelled Compd Radiopharm, 1992, 32(S1): 123-124.
[27]
Taylor MD, Roberts AD, Nickles RJ. Improving the yield of 2-[18F]fluoro-2-deoxyglucose using a microwave cavity[J]. Nucl Med Biol, 1996, 23(5): 605-609.
[28]
Nickles RJ, Dick DW, Nye JA, et al. A day at the races: Three microwave cavities making FDG[J]. J Labelled Compd Radiopharm, 2003, 46(S1): S208.
[29]
Schubiger PA, Lehmann L, Friebe M. PET chemistry the driving force in molecular imaging[M]. Berlin: Springer Berlin Heidelberj, 2007.
[30]
Lee C-C, Sui G, Elizarov A, et al. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics[J]. Science, 2005, 310-(5 755): 1 793-1 796.
[31]
Wester H-J, Schoultz B, Hultsch C,et al. Fast and repetitive in-capillary production of [18F]FDG[J]. Eur J Nucl Med Mol Imaging, 2009, 36(4): 653-658.
[32]
Wong R, Iwata R, Saiki H, et al. Reactivity of electrochemically concentrated anhydrous [18F]fluoride for microfluidic radiosynthesis of 18F-labeled compounds[J]. Appl Radiat Isotopes, 2012, 70(1): 193-199.
[33]
Audrain H. Positron emission tomography (PET) and microfluidic devices: a breakthrough on the microscale? [J]. Angew Chem Int Ed, 2007, 46(11): 1 772-1 775.
[34]
Yu S. Review of 18F-FDG synthesis and quality control[J]. Biomed Imaging Interv J, 2006, 2(4): e57.
[35]
Gallagher BM, Fowler JS, Gutterson NI, et al. Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose[J]. J Nucl Med, 1978, 19(10): 1 154-1 161.
[36]
Silverman M, Aganon MA, Chinard FP. Specificity of monosaccharide transport in dog kidney[J]. Am J Physiol, 1970, 218(3): 743-750.
[37]
Bessell EM, Foster AB, Westwood JH. The use of deoxyfluoro-D-glucopyranoses and related compounds in a study of yeast hexokinase specificity[J]. Biochem J, 1972, 128(2): 199-204.
[38]
Gottlieb E. p53 guards the metabolic pathway less travelled[J]. Nat Cell Biol, 2011, 13(3): 195-197.
[39]
Groheux D, Giacchetti S, Espié M, et al. The yield of 18F-FDG PET/CT in patients with clinical stage ⅡA, ⅡB, or ⅢA breast cancer: A prospective study[J]. J Nucl Med, 2011, 52(10): 1 526-1 534.
[40]
Choi SH, Kim YT, Kim SK, et al. Positron emission tomography-computed tomography for postoperative surveillance in nonsmall cell lung cancer[J]. Ann Thorac Surg, 2011, 92(5): 1 826-1 832.
[41]
Vaidya M, Creach KM, Frye J, et al. Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer[J]. Radiother Oncol, 2011, 16: in press.
[42]
Locsei Z, Hideghety K, Farkas R, et al. Application of PET/CT in the radiotherapy of patients with non-small cell lung cancer[J]. Magy Onkol, 2011, 55(4): 274-280.
[43]
Chang C-F, Rashtian A, Gould MK. The use and misuse of positron emission tomography in lung cancer evaluation[J]. Clin Chest Med, 2011, 32(4): 749-762.
[44]
Cao JQ, Rodrigues GB, Louie AV, et al. Systematic review of the cost-effectiveness of positron-emission tomography in staging of non-small-cell lung cancer and management of solitary pulmonary nodules[J]. Clin Lung Cancer, 2011, 29: in press.