Balesdent J, Mariotti A. Measurement of soil organic matter turnover using13C natural abundance [M]//Boutton, TW, Yamasaki SI. Mass Spectrometry of Soils. New York:Marcel Dekker,1996: 83-111.
[2]
Bernoux M, Cerri CC, Neill C, et al. The use of stable carbon isotopes for estimating soil organic matter turnover rates [J]. Geoderma, 1998, 82(1-3): 43-58.
[3]
Bowling DR, Pataki DE, Randerson JT. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes[J]. New Phytologist, 2008, 178(1): 24-40.
[4]
Dignac MF, Bahri H, Rumpel C, et al. Carbon-13 natural abundance as a tool to study the dynamics of lignin monomers in soil: an appraisal at the Closeaux experimental field (France) [J]. Geoderma, 2005, 128(1): 3-17.
[5]
Werth M, Kuzyakov Y. 13C fractionation at the root-microorganisms-soil interface: A review and outlook for partitioning studies [J]. Soil Biology and Biochemistry, 2010, 42(9): 1372-1384.
[6]
Lu Y, Conrad R. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere [J]. Science, 2005, 309: 1088-1090.
[7]
Bastian F, Bouziri L, Nicolardot B, et al. Impact of wheat straw decomposition on successional patterns of soil microbial community structure [J]. Soil Biology and Biochemistry, 2009, 41: 262-275
[8]
Yuan HZ, Ge TD, Chen CY, et al. Microbial autotrophy plays a significant role in the sequestration of soil carbon [J]. Applied and Environmental Microbiology, 2012, 78: 2328-2336
[9]
Yuan HZ, Ge TD, Zou ZY, et al. Effect of land use on the abundance and diversity of autotrophic bacteria as measured by ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit gene abundance in soils [J]. Biology and Fertility of Soils, 2013, 49: 609-616.
[10]
Russowa R,Stange CF, Neue HU. Role of nitrite and nitric oxide in the processes of nitrification and denitrification in soil: Results from 15N tracer experiments [J]. Soil Biology and Biochemistry, 2009, 41: 785-795
[11]
Watzinger AA, Feichtmair S, Kitzler B, et al. Soil microbial communities responded to biochar application in temperate soils and slowly metabolized13C labelled biochar as revealed by13C PLFA analyses: results from a short-term incubation and pot experiment [J]. European Journal of Soil Science, 2014, 65: 40-51.
[12]
孟凡乔, 匡星, 杜章留, 等. 不同土地利用方式及栽培措施对土壤有机碳及δ13C值的影响[J]. 环境科学, 2010, 31(8): 1733-1739.Meng Fanqiao, Kuang xing, Du Zhangliu, et al. Impact of land use change and cultivation measures on soil organic carbon (SOC) and itsδ13C values[J]. Environmental Science, 2010, 31(8): 1733-1739(in Chinese).
[13]
唐晓红, 罗友进, 任振江, 等. 长期垄作稻田腐殖质稳定碳同位素丰度(δ13C)分布特征[J]. 应用生态学报, 2011, 22(4): 985-991.Tang Xiaohong, Luo Youjin, Ren Zhenjiang, et al. Distribution characteristics of soil humus fractious stable carbon isotope natural abundance (δ13C) in paddy field under long-term ridge culture[J]. Chinese Journal of Applied Ecology, 2011, 22(4): 985-991(in Chinese).
[14]
Ge TD, Yuan HZ, Zhu HH, et al. Biological carbon assimilation and dynamics in a flooded rice-soil system [J]. Soil Biology and Biochemistry, 2012, 48: 39-49.
[15]
Meinshausen M, Meinshausen N, Hare W, et al. Greenhouse-gas emission targets for limiting global warming to 2°C [J]. Nature, 2009, 458:1158-1162.
[16]
Midgley GF, Bond WJ, Kapos V, et al. Terrestrial carbon stocks and biodiversity: key knowledge gaps and some policy implications [J]. Current Opinion in Environmental Sustainability, 2010, 2: 264-270.
[17]
李玉宁, 王关玉, 李伟. 土壤呼吸作用和全球碳循环[J]. 地学前缘, 2002, 9(2): 351-357.Li Yuning, Wang Guanyu, Li Wei. Soil respiration and carbon cycle[J]. Earth Science Frontires, 2002, 9(2): 351-357(in Chinese).
[18]
姜勇, 庄秋丽, 梁文举. 农田生态系统土壤有机碳库及其影响因子[J]. 生态学杂志, 2007, 26(2): 278-285.Jiang Yong, Zhuang QiuLi, Liang Wenju. Soil organic carbon pool and its affecting factors in farmland ecosystem[J]. Chinese Journal of Ecology, 2007, 26(2): 278-285(in Chinese).
[19]
Kumar R, Pandey S, Pandey A. Plant roots and carbon sequestration [J]. Current Science, 2006, 91: 885-890
IPCC. In Climate change 2007[C]//Climate change-impacts, adaptation and vulnerability: Working Group II. Geneva: Switzerland, 2007. http://www.ipcc.ch.
[22]
Peterson BJ, Fry B. Stable isotopes in ecosystem studies [J]. Annual review of ecology and systematic, 1987, 18:293320.
[23]
Chapin III FS, Matson PPA. Principles of terrestrial ecosystem ecology [M]. Berlin: Springer, 2011.
[24]
Michener R, Lajtha K. Stable isotopes in ecology and environmental science [M/OL]. British: black well,2008[2014-03-24]. http://as.wiley. com/wiley CDA/Section/id-302769.html, 2008.
[25]
Tieszen LL, Boutton TW. Stable carbon isotopes in terrestrial ecosystem research[M]//Stable isotopes in ecological research . New York: Springer, 1989: 167-195.
[26]
林光辉. 稳定同位素生态学[M]. 北京: 高等教育出版社, 2013.
[27]
于贵瑞, 王绍强, 陈泮勤, 等. 碳同位素技术在土壤碳循环研究中的应用[J]. 地球科学进展, 2005, 20(5): 568-577.Yu Guirui, Wang Shaoqiang, Chen Panqin, et al. Isotope tracer approaches in soil organic carbon cycle research[J]. Advances in Earth Science, 2005, 20(5): 568-577(in Chinese).
[28]
Ehleringer JR, Buchmann N, Flanagan LB. Carbon isotope ratios in belowground carbon cycle processes [J]. Ecological Applications, 2000, 10(2): 412-422.
[29]
田秋香, 张威, 闫颖, 等. 稳定性同位素技术在土壤重要有机组分循环转化研究中的应用[J]. 土壤, 2011, 43(6): 862-869.Tian Qiuxiang, Zhang Wei, Yan Ying. et al. The application of stable isotope techniques in investigating cycling of soil organic components[J]. Soils, 2011, 43(6): 862-869.
[30]
刘微, 吕豪豪, 陈英旭, 等. 稳定碳同位素技术在土壤植物系统碳循环中的应用[J]. 应用生态学报, 2008, 3: 674-680. Liu Wei, Lü Haohao, Chen Yingxu, et al. Application of stable carbon isotope technique in the research of carbon cycling in soil-plant system[J]. Chinese Journal of Applied Ecology, 2008, 3: 674-680.
[31]
Conrad R, Klose M, Claus P, EnrichPrastet A. Methanogenic pathway,13C isotope fractionation, and archaeal community composition in the sediment of two clear-water lakes of Amazonia [J]. Limnology and Oceanography, 2010, 55(2): 689.
[32]
Werth M, Kuzyakov Y. Rootderived carbon in soil respiration and microbial biomass determined by 14C and 13C [J]. Soil Biology and Biochemistry, 2008, 40(3): 625-637.
[33]
Whiticar MJ. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane [J]. Chemical Geology, 1999, 161(1): 291-314.
[34]
张林, 孙向阳, 高程达, 等. 稳定同位素比例质谱仪在土壤碳循环研究中的应用[J]. 分析仪器, 2010, 1: 18-23.Zhang Lin, Sun Xiangyang, Gao Chengda, et al. Applications of stable isotope ratio mass spectrometer in soil carbon cycle research[J]. Analytical Instrumentation, 2010, 1: 18-23(in Chinese).
[35]
Crow SE, Sulzman EW, Rugh WD, et al. Isotopic analysis of respired CO2 during decomposition of separated soil organic matter pools [J]. Soil Biology and Biochemistry, 2006, 38(11):3279-3291.
[36]
Fernandez I, Mahieu N, Cadisch G. Carbon isotopic fractionation during decomposition of plant materials of different quality [J]. Global Biogeochemical Cycles, 2003, 17(3):1.
[37]
Bai E, Boutton TW, Liu F, et al. Spatial patterns of soilδ13C reveal grassland-to-woodland successional processes [J]. Organic Geochemistry, 2012, 42(12): 1512-1518.
[38]
Paul D, Skrzypek G, Fórizs I. Normalization of measured stable isotopic compositions to isotope reference scales a review[J]. Rapid Communications in Mass Spectrometry,2007, 21 (18): 3006-3014.
[39]
Eiler JM, Clog M, Magyar P, et al. A high-resolution gas-source isotope ratio mass spectrometer[J]. International Journal of Mass Spectrometry, 2013, 335: 45-56.
[40]
Boutton TW. Stable carbon isotope ratios of natural materials: I. Sample preparation and mass spectrometric analysis [J]. Carbon isotope techniques, 1991, 1: 155.
[41]
Reinnicke S, Juchelka D, Steinbeiss S, et al. Gas chromatography/isotope ratio mass spectrometry of recalcitrant target compounds: performance of different combustion reactors and strategies for standardization [J]. Rapid Communications in Mass Spectrometry, 2012, 26(9): 1053-1060.
[42]
Wu J, O'Donnell AG. Procedure for the simultaneous analysis of total and radioactive carbon in soil and plant materials [J]. Soil Biology and Biochemistry, 1997, 29:199-202.
[43]
Blagodatskaya E, Yuyukina T, Blagodatsky S, et al. Turnover of soil organic matter and of microbial biomass under C3-C4 vegetation change: Consideration of 13C fractionation and preferential substrate utilization [J]. Soil Biology and Biochemistry, 2011, 43(1): 159-166.
[44]
曹亚澄, 孙国庆, 韩勇,等. 大气浓度下 N2O, CH4 和 CO2 中氮, 碳和氧稳定同位素比值的质谱测定[J]. 土壤学报, 2008, 45(2): 249-258.Cao Yacheng, Sun Guoqing, Han Yong, et al. Determination of nitrogen, carbon and oxygen stable isotope ratios in N2O, CH4, and CO2 at natural abundance levels by mass spectrometer[J]. Acta Pedologica Sinica, 2008, 45(2): 249-258(in Chinese).
[45]
Throop HL, Lajtha K, Kramer M. Density fractionation and 13C reveal changes in soil carbon following woody encroachment in a desert ecosystem[J]. Biogeochemistry, 2013, 112:409-422.
[46]
Qiao Y , Miao S, Li N, et al. Spatial distribution of rhizodeposit carbon of maize (Zea mays L.) in soil aggregates assessed by multiple pulse 13C labeling in the field[J]. Plant and Soil, 2014, 375:317-329.
[47]
McMahon SK, Williams MA, Bottomley PJ. et al. Dynamics of microbial communities during decomposition of Carbon-13 labeled ryegrass fractions in soil[J]. Soil Science Society of America Journal, 2004, 4: 1238-1247.
[48]
Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods[J]. Soil Biology and Biochemistry, 2006, 38: 425-448.
[49]
Hanson PJ, Edwards NT, Garten CT, et al. Separating root and soil microbial contributions to soil respiration: A reviewof methods and observations[J]. Biogeochemistry, 2000, 48: 115-146.
[50]
Pataki DE, Ehleringer JR, Flanagan LB, et al. The application and interpretation of Keeling plots in terrestrial carbon cycle research[J]. Global Biogeochemical Cycles, 2003, 17(1): 1022.
[51]
Mora G, Raich JW. Carbon-isotopic composition of soil-respired carbon dioxide in static closed chambers at equilibrium[J]. Rapid Communications in Mass Spectrometry, 2007, 21(12):1866-1870.
[52]
Albanitoa F, McAllistera JL, Cescatti A, et al. Dual-chamber measurements of13C of soil-respired CO2 partitioned using a field-based three end-member model[J]. Soil Biology and Biochemistry, 2012, 47: 106-115.
[53]
Buchmann N, Ehleringer JR. CO2 concentration profiles,and carbon and oxygen isotopes in C3 and C4 crop canopies[J]. Agricultural and Forest Meteorology, 1998, 89( 1) : 45-58. [40]孙伟, 林光辉, 陈世苹, 等. 稳定同位素技术与Keeling 曲线法在陆地生态系统碳/水交换研究中的应用[J]. 植物生态学报, 2005, 29 (5): 851-862.Sun Wei, Lin GuangHui, Chen ShiPing, et al. Applications of stable isotope techniques and keeling plot approach to carbon and water exchange studies of terrestrial ecosystems[J]. Acta Phytoecologica Sinica, 2005, 29 (5): 851-862(in Chinese).
[54]
Pataki DE, Ehleringer JR, Flanagan LB, et al. The application and interpretation of Keeling plots in terrestrial carbon cycle research[J]. Global Biogeochemical Cycles, 2003, 17(1): 1022-1036.
[55]
Balesdent J, Wagner G H, Mariotti A. Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance [J]. Soil Science Society of America Journal, 1988, 52(1): 118-124.
[56]
Peterson BJ, Fry B. Stable isotopes in ecosystem studies [J]. Annual review of ecology and systematic, 1987, 18: 293-320.
[57]
Paul EA, Clark FE. Carbon cycling and soil organic matter [J]. Soil microbiology and biochemistry, 1996: 130-155.
[58]
Kuzyakov Y, Domanski G. Carbon input by plants into the soil [J]. Review. Journal of Plant Nutrition and Soil Science, 2000, 163(4): 421-431.
[59]
窦森, 张晋京, Lichtfouse E, 等. 用δ13C方法研究玉米秸秆分解期间土壤有机质数量动态变化[J]. 土壤学报, 2003, 40(3): 328-334.Dou Sen, Zhang Jinjing, Lichtfouse E, et al. Study on dynamic change of soil organic matter during corn stalk decomposition byδ13C method[J]. Acta Pedologica Sinica, 2003, 40(3): 328-334.
[60]
Katoh M, Murase J, Sugimoto A, et al. Effect of rice straw amendment on dissolved organic and inorganic carbon and cationic nutrients in percolating water from a flooded paddy soil: A microcosm experiment using13C-enriched rice straw [J]. Organic geochemistry, 2005, 36(5): 803-811.
[61]
Lu Y, Watanabe A, Kimura M. Carbon dynamics of rhizodeposits, root-and shoot-residues in a rice soil [J]. Soil Biology and Biochemistry, 2003, 35(9): 1223-1230.
[62]
Fan F, Zhang F, Qu Z, et al. Plant carbon partitioning below ground in the presence of different neighboring species [J]. Soil Biology and Biochemistry, 2008, 40: 2266-2272.
[63]
Liang BC, Wang XL, Ma BL. Maize root-induced change in soil organic carbon pools [J]. Soil Science Society of America Journal, 2002, 66: 845-847.
[64]
Yevdokimov I, Ruser R, Buegger F, et al. Microbial immobilisation of13C rhizodeposits in rhizosphere and root-free soil under continuous 13C labelling of oats[J]. Soil Biology and Biochemistry, 2006, 38(6): 1202-1211.
[65]
何敏毅, 孟凡乔, 史雅娟, 等. 用13C 脉冲标记法研究玉米光合碳分配及其向地下的输入[J]. 环境科学, 2008, 29: 446-453.He Minyi, Meng Fanqiao, Shi Yajuan, et al. Estimating photosynthesized carbon distribution and inputs into belowground in a maize soil following13C pulse-labeling[J]. Environmental Science, 2008, 29: 446-453(in Chinese).
[66]
Hütsch BW, Augustin J, Merbach W. Plant rhizodeposition-an important source for carbon turnover in soils [J]. Journal of Plant Nutrition and Soil Science, 2002, 165: 397-407.
[67]
Tavi NM, Martikainen PJ, Lokko K, et al. Linking microbial community structure and allocation of plant-derived carbon in an organic agricultural soil using 13CO2 pulse-chase labelling combined with13C-PLFA profiling [J]. Soil Biology and Biochemistry, 2013, 58:207-215.
[68]
Radajewski S, Ineson P, Parekh NR, et al. Stable-isotope probing as a tool in microbial ecology[J]. Nature, 2000, 403: 646-649
[69]
Kuzyakov Y, Gavrichkova O. Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls [J]. Global Change Biology, 2010, 16: 3386-3406.
[70]
Lu Y, Murase J, Watanabe A, et al. Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil [J]. FEMS Microbiology Ecology, 2004, 48:179-186.