全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
同位素  2014 

稳定同位素分析技术在农田生态系统土壤碳循环中的应用

DOI: 10.7538/tws.2014.27.03.0170, PP. 170-178

Keywords: 稳定同位素技术,碳同位素,同位素分馏,碳循环,土壤有机质

Full-Text   Cite this paper   Add to My Lib

Abstract:

加强农田土壤碳动态变化过程和调控机制的认识,对于深入认识陆地生态系统碳循环过程和准确估算全球碳平衡有着重要意义。稳定碳同位素作为一种天然的示踪物,较放射性同位素具有安全、无污染、易控制的优点,在农田生态系统土壤碳循环研究中得到广泛应用。采用稳定碳同位素自然丰度法或示踪技术,研究农田生态系统大气作物-土壤连续体中碳同位素变化规律,能够较真实地反映土壤有机碳的累积及其分解转化过程。本文概述了农田生态系统碳素循环诸过程中的13C同位素分馏机制,稳定碳同位素质谱分析技术的基本原理与方法,以及近年稳定碳同位素自然丰度或示踪法在农田生态系统土壤碳循环研究中的一些应用实例,并针对当前研究存在的问题进行总结。

References

[1]  Balesdent J, Mariotti A. Measurement of soil organic matter turnover using13C natural abundance [M]//Boutton, TW, Yamasaki SI. Mass Spectrometry of Soils. New York:Marcel Dekker,1996: 83-111.
[2]  Bernoux M, Cerri CC, Neill C, et al. The use of stable carbon isotopes for estimating soil organic matter turnover rates [J]. Geoderma, 1998, 82(1-3): 43-58.
[3]  Bowling DR, Pataki DE, Randerson JT. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes[J]. New Phytologist, 2008, 178(1): 24-40.
[4]  Dignac MF, Bahri H, Rumpel C, et al. Carbon-13 natural abundance as a tool to study the dynamics of lignin monomers in soil: an appraisal at the Closeaux experimental field (France) [J]. Geoderma, 2005, 128(1): 3-17.
[5]  Werth M, Kuzyakov Y. 13C fractionation at the root-microorganisms-soil interface: A review and outlook for partitioning studies [J]. Soil Biology and Biochemistry, 2010, 42(9): 1372-1384.
[6]  Lu Y, Conrad R. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere [J]. Science, 2005, 309: 1088-1090.
[7]  Bastian F, Bouziri L, Nicolardot B, et al. Impact of wheat straw decomposition on successional patterns of soil microbial community structure [J]. Soil Biology and Biochemistry, 2009, 41: 262-275
[8]  Yuan HZ, Ge TD, Chen CY, et al. Microbial autotrophy plays a significant role in the sequestration of soil carbon [J]. Applied and Environmental Microbiology, 2012, 78: 2328-2336
[9]  Yuan HZ, Ge TD, Zou ZY, et al. Effect of land use on the abundance and diversity of autotrophic bacteria as measured by ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit gene abundance in soils [J]. Biology and Fertility of Soils, 2013, 49: 609-616.
[10]  Russowa R,Stange CF, Neue HU. Role of nitrite and nitric oxide in the processes of nitrification and denitrification in soil: Results from 15N tracer experiments [J]. Soil Biology and Biochemistry, 2009, 41: 785-795
[11]  Watzinger AA, Feichtmair S, Kitzler B, et al. Soil microbial communities responded to biochar application in temperate soils and slowly metabolized13C labelled biochar as revealed by13C PLFA analyses: results from a short-term incubation and pot experiment [J]. European Journal of Soil Science, 2014, 65: 40-51.
[12]  孟凡乔, 匡星, 杜章留, 等. 不同土地利用方式及栽培措施对土壤有机碳及δ13C值的影响[J]. 环境科学, 2010, 31(8): 1733-1739.Meng Fanqiao, Kuang xing, Du Zhangliu, et al. Impact of land use change and cultivation measures on soil organic carbon (SOC) and itsδ13C values[J]. Environmental Science, 2010, 31(8): 1733-1739(in Chinese).
[13]  唐晓红, 罗友进, 任振江, 等. 长期垄作稻田腐殖质稳定碳同位素丰度(δ13C)分布特征[J]. 应用生态学报, 2011, 22(4): 985-991.Tang Xiaohong, Luo Youjin, Ren Zhenjiang, et al. Distribution characteristics of soil humus fractious stable carbon isotope natural abundance (δ13C) in paddy field under long-term ridge culture[J]. Chinese Journal of Applied Ecology, 2011, 22(4): 985-991(in Chinese).
[14]  Ge TD, Yuan HZ, Zhu HH, et al. Biological carbon assimilation and dynamics in a flooded rice-soil system [J]. Soil Biology and Biochemistry, 2012, 48: 39-49.
[15]  Meinshausen M, Meinshausen N, Hare W, et al. Greenhouse-gas emission targets for limiting global warming to 2°C [J]. Nature, 2009, 458:1158-1162.
[16]  Midgley GF, Bond WJ, Kapos V, et al. Terrestrial carbon stocks and biodiversity: key knowledge gaps and some policy implications [J]. Current Opinion in Environmental Sustainability, 2010, 2: 264-270.
[17]  李玉宁, 王关玉, 李伟. 土壤呼吸作用和全球碳循环[J]. 地学前缘, 2002, 9(2): 351-357.Li Yuning, Wang Guanyu, Li Wei. Soil respiration and carbon cycle[J]. Earth Science Frontires, 2002, 9(2): 351-357(in Chinese).
[18]  姜勇, 庄秋丽, 梁文举. 农田生态系统土壤有机碳库及其影响因子[J]. 生态学杂志, 2007, 26(2): 278-285.Jiang Yong, Zhuang QiuLi, Liang Wenju. Soil organic carbon pool and its affecting factors in farmland ecosystem[J]. Chinese Journal of Ecology, 2007, 26(2): 278-285(in Chinese).
[19]  Kumar R, Pandey S, Pandey A. Plant roots and carbon sequestration [J]. Current Science, 2006, 91: 885-890
[20]  魏一鸣, 范英, 韩智勇, 等. 中国能源报告: 战略与政策研究[M]. 北京:科学出版社, 2006.
[21]  IPCC. In Climate change 2007[C]//Climate change-impacts, adaptation and vulnerability: Working Group II. Geneva: Switzerland, 2007. http://www.ipcc.ch.
[22]  Peterson BJ, Fry B. Stable isotopes in ecosystem studies [J]. Annual review of ecology and systematic, 1987, 18:293320.
[23]  Chapin III FS, Matson PPA. Principles of terrestrial ecosystem ecology [M]. Berlin: Springer, 2011.
[24]  Michener R, Lajtha K. Stable isotopes in ecology and environmental science [M/OL]. British: black well,2008[2014-03-24]. http://as.wiley. com/wiley CDA/Section/id-302769.html, 2008.
[25]  Tieszen LL, Boutton TW. Stable carbon isotopes in terrestrial ecosystem research[M]//Stable isotopes in ecological research . New York: Springer, 1989: 167-195.
[26]  林光辉. 稳定同位素生态学[M]. 北京: 高等教育出版社, 2013.
[27]  于贵瑞, 王绍强, 陈泮勤, 等. 碳同位素技术在土壤碳循环研究中的应用[J]. 地球科学进展, 2005, 20(5): 568-577.Yu Guirui, Wang Shaoqiang, Chen Panqin, et al. Isotope tracer approaches in soil organic carbon cycle research[J]. Advances in Earth Science, 2005, 20(5): 568-577(in Chinese).
[28]  Ehleringer JR, Buchmann N, Flanagan LB. Carbon isotope ratios in belowground carbon cycle processes [J]. Ecological Applications, 2000, 10(2): 412-422.
[29]  田秋香, 张威, 闫颖, 等. 稳定性同位素技术在土壤重要有机组分循环转化研究中的应用[J]. 土壤, 2011, 43(6): 862-869.Tian Qiuxiang, Zhang Wei, Yan Ying. et al. The application of stable isotope techniques in investigating cycling of soil organic components[J]. Soils, 2011, 43(6): 862-869.
[30]  刘微, 吕豪豪, 陈英旭, 等. 稳定碳同位素技术在土壤植物系统碳循环中的应用[J]. 应用生态学报, 2008, 3: 674-680. Liu Wei, Lü Haohao, Chen Yingxu, et al. Application of stable carbon isotope technique in the research of carbon cycling in soil-plant system[J]. Chinese Journal of Applied Ecology, 2008, 3: 674-680.
[31]  Conrad R, Klose M, Claus P, EnrichPrastet A. Methanogenic pathway,13C isotope fractionation, and archaeal community composition in the sediment of two clear-water lakes of Amazonia [J]. Limnology and Oceanography, 2010, 55(2): 689.
[32]  Werth M, Kuzyakov Y. Rootderived carbon in soil respiration and microbial biomass determined by 14C and 13C [J]. Soil Biology and Biochemistry, 2008, 40(3): 625-637.
[33]  Whiticar MJ. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane [J]. Chemical Geology, 1999, 161(1): 291-314.
[34]  张林, 孙向阳, 高程达, 等. 稳定同位素比例质谱仪在土壤碳循环研究中的应用[J]. 分析仪器, 2010, 1: 18-23.Zhang Lin, Sun Xiangyang, Gao Chengda, et al. Applications of stable isotope ratio mass spectrometer in soil carbon cycle research[J]. Analytical Instrumentation, 2010, 1: 18-23(in Chinese).
[35]  Crow SE, Sulzman EW, Rugh WD, et al. Isotopic analysis of respired CO2 during decomposition of separated soil organic matter pools [J]. Soil Biology and Biochemistry, 2006, 38(11):3279-3291.
[36]  Fernandez I, Mahieu N, Cadisch G. Carbon isotopic fractionation during decomposition of plant materials of different quality [J]. Global Biogeochemical Cycles, 2003, 17(3):1.
[37]  Bai E, Boutton TW, Liu F, et al. Spatial patterns of soilδ13C reveal grassland-to-woodland successional processes [J]. Organic Geochemistry, 2012, 42(12): 1512-1518.
[38]  Paul D, Skrzypek G, Fórizs I. Normalization of measured stable isotopic compositions to isotope reference scales a review[J]. Rapid Communications in Mass Spectrometry,2007, 21 (18): 3006-3014.
[39]  Eiler JM, Clog M, Magyar P, et al. A high-resolution gas-source isotope ratio mass spectrometer[J]. International Journal of Mass Spectrometry, 2013, 335: 45-56.
[40]  Boutton TW. Stable carbon isotope ratios of natural materials: I. Sample preparation and mass spectrometric analysis [J]. Carbon isotope techniques, 1991, 1: 155.
[41]  Reinnicke S, Juchelka D, Steinbeiss S, et al. Gas chromatography/isotope ratio mass spectrometry of recalcitrant target compounds: performance of different combustion reactors and strategies for standardization [J]. Rapid Communications in Mass Spectrometry, 2012, 26(9): 1053-1060.
[42]  Wu J, O'Donnell AG. Procedure for the simultaneous analysis of total and radioactive carbon in soil and plant materials [J]. Soil Biology and Biochemistry, 1997, 29:199-202.
[43]  Blagodatskaya E, Yuyukina T, Blagodatsky S, et al. Turnover of soil organic matter and of microbial biomass under C3-C4 vegetation change: Consideration of 13C fractionation and preferential substrate utilization [J]. Soil Biology and Biochemistry, 2011, 43(1): 159-166.
[44]  曹亚澄, 孙国庆, 韩勇,等. 大气浓度下 N2O, CH4 和 CO2 中氮, 碳和氧稳定同位素比值的质谱测定[J]. 土壤学报, 2008, 45(2): 249-258.Cao Yacheng, Sun Guoqing, Han Yong, et al. Determination of nitrogen, carbon and oxygen stable isotope ratios in N2O, CH4, and CO2 at natural abundance levels by mass spectrometer[J]. Acta Pedologica Sinica, 2008, 45(2): 249-258(in Chinese).
[45]  Throop HL, Lajtha K, Kramer M. Density fractionation and 13C reveal changes in soil carbon following woody encroachment in a desert ecosystem[J]. Biogeochemistry, 2013, 112:409-422.
[46]  Qiao Y , Miao S, Li N, et al. Spatial distribution of rhizodeposit carbon of maize (Zea mays L.) in soil aggregates assessed by multiple pulse 13C labeling in the field[J]. Plant and Soil, 2014, 375:317-329.
[47]  McMahon SK, Williams MA, Bottomley PJ. et al. Dynamics of microbial communities during decomposition of Carbon-13 labeled ryegrass fractions in soil[J]. Soil Science Society of America Journal, 2004, 4: 1238-1247.
[48]  Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods[J]. Soil Biology and Biochemistry, 2006, 38: 425-448.
[49]  Hanson PJ, Edwards NT, Garten CT, et al. Separating root and soil microbial contributions to soil respiration: A reviewof methods and observations[J]. Biogeochemistry, 2000, 48: 115-146.
[50]  Pataki DE, Ehleringer JR, Flanagan LB, et al. The application and interpretation of Keeling plots in terrestrial carbon cycle research[J]. Global Biogeochemical Cycles, 2003, 17(1): 1022.
[51]  Mora G, Raich JW. Carbon-isotopic composition of soil-respired carbon dioxide in static closed chambers at equilibrium[J]. Rapid Communications in Mass Spectrometry, 2007, 21(12):1866-1870.
[52]  Albanitoa F, McAllistera JL, Cescatti A, et al. Dual-chamber measurements of13C of soil-respired CO2 partitioned using a field-based three end-member model[J]. Soil Biology and Biochemistry, 2012, 47: 106-115.
[53]  Buchmann N, Ehleringer JR. CO2 concentration profiles,and carbon and oxygen isotopes in C3 and C4 crop canopies[J]. Agricultural and Forest Meteorology, 1998, 89( 1) : 45-58. [40]孙伟, 林光辉, 陈世苹, 等. 稳定同位素技术与Keeling 曲线法在陆地生态系统碳/水交换研究中的应用[J]. 植物生态学报, 2005, 29 (5): 851-862.Sun Wei, Lin GuangHui, Chen ShiPing, et al. Applications of stable isotope techniques and keeling plot approach to carbon and water exchange studies of terrestrial ecosystems[J]. Acta Phytoecologica Sinica, 2005, 29 (5): 851-862(in Chinese).
[54]  Pataki DE, Ehleringer JR, Flanagan LB, et al. The application and interpretation of Keeling plots in terrestrial carbon cycle research[J]. Global Biogeochemical Cycles, 2003, 17(1): 1022-1036.
[55]  Balesdent J, Wagner G H, Mariotti A. Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance [J]. Soil Science Society of America Journal, 1988, 52(1): 118-124.
[56]  Peterson BJ, Fry B. Stable isotopes in ecosystem studies [J]. Annual review of ecology and systematic, 1987, 18: 293-320.
[57]  Paul EA, Clark FE. Carbon cycling and soil organic matter [J]. Soil microbiology and biochemistry, 1996: 130-155.
[58]  Kuzyakov Y, Domanski G. Carbon input by plants into the soil [J]. Review. Journal of Plant Nutrition and Soil Science, 2000, 163(4): 421-431. 
[59]  窦森, 张晋京, Lichtfouse E, 等. 用δ13C方法研究玉米秸秆分解期间土壤有机质数量动态变化[J]. 土壤学报, 2003, 40(3): 328-334.Dou Sen, Zhang Jinjing, Lichtfouse E, et al. Study on dynamic change of soil organic matter during corn stalk decomposition byδ13C method[J]. Acta Pedologica Sinica, 2003, 40(3): 328-334.
[60]  Katoh M, Murase J, Sugimoto A, et al. Effect of rice straw amendment on dissolved organic and inorganic carbon and cationic nutrients in percolating water from a flooded paddy soil: A microcosm experiment using13C-enriched rice straw [J]. Organic geochemistry, 2005, 36(5): 803-811.
[61]  Lu Y, Watanabe A, Kimura M. Carbon dynamics of rhizodeposits, root-and shoot-residues in a rice soil [J]. Soil Biology and Biochemistry, 2003, 35(9): 1223-1230.
[62]  Fan F, Zhang F, Qu Z, et al. Plant carbon partitioning below ground in the presence of different neighboring species [J]. Soil Biology and Biochemistry, 2008, 40: 2266-2272.
[63]  Liang BC, Wang XL, Ma BL. Maize root-induced change in soil organic carbon pools [J]. Soil Science Society of America Journal, 2002, 66: 845-847.
[64]  Yevdokimov I, Ruser R, Buegger F, et al. Microbial immobilisation of13C rhizodeposits in rhizosphere and root-free soil under continuous 13C labelling of oats[J]. Soil Biology and Biochemistry, 2006, 38(6): 1202-1211.
[65]  何敏毅, 孟凡乔, 史雅娟, 等. 用13C 脉冲标记法研究玉米光合碳分配及其向地下的输入[J]. 环境科学, 2008, 29: 446-453.He Minyi, Meng Fanqiao, Shi Yajuan, et al. Estimating photosynthesized carbon distribution and inputs into belowground in a maize soil following13C pulse-labeling[J]. Environmental Science, 2008, 29: 446-453(in Chinese).
[66]  Hütsch BW, Augustin J, Merbach W. Plant rhizodeposition-an important source for carbon turnover in soils [J]. Journal of Plant Nutrition and Soil Science, 2002, 165: 397-407.
[67]  Tavi NM, Martikainen PJ, Lokko K, et al. Linking microbial community structure and allocation of plant-derived carbon in an organic agricultural soil using 13CO2 pulse-chase labelling combined with13C-PLFA profiling [J]. Soil Biology and Biochemistry, 2013, 58:207-215.
[68]  Radajewski S, Ineson P, Parekh NR, et al. Stable-isotope probing as a tool in microbial ecology[J]. Nature, 2000, 403: 646-649
[69]  Kuzyakov Y, Gavrichkova O. Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls [J]. Global Change Biology, 2010, 16: 3386-3406.
[70]  Lu Y, Murase J, Watanabe A, et al. Linking microbial community dynamics to rhizosphere carbon flow in a wetland rice soil [J]. FEMS Microbiology Ecology, 2004, 48:179-186.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133