全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Numerical Predictions of Cavitating Flow around Model Scale Propellers by CFD and Advanced Model Calibration

DOI: 10.1155/2012/618180

Full-Text   Cite this paper   Add to My Lib

Abstract:

The numerical predictions of the cavitating flow around two model scale propellers in uniform inflow are presented and discussed. The simulations are carried out using a commercial CFD solver. The homogeneous model is used and the influence of three widespread mass transfer models, on the accuracy of the numerical predictions, is evaluated. The mass transfer models in question share the common feature of employing empirical coefficients to adjust mass transfer rate from water to vapour and back, which can affect the stability and accuracy of the predictions. Thus, for a fair and congruent comparison, the empirical coefficients of the different mass transfer models are first properly calibrated using an optimization strategy. The numerical results obtained, with the three different calibrated mass transfer models, are very similar to each other for two selected model scale propellers. Nevertheless, a tendency to overestimate the cavity extension is observed, and consequently the thrust, in the most severe operational conditions, is not properly predicted. 1. Introduction In the field of marine applications, and in the particular case of marine propellers, the onset of cavitation is, in general, associated with negative design implications such as thrust reduction, noise, vibration, and erosion. In the last decades, also owing to the steady increasing of the computer performances, in order to improve the design process, several CFD (Computational Fluid Dynamics) methods have been developed for the prediction of the cavitation appearance and the estimation of its effects. In this study, we evaluated the capabilities of the homogeneous, that is, one-fluid model implemented in the ANSYS CFX 12 (for brevity CFX hereafter) commercial CFD solver, for the prediction of cavitating flow around model scale propellers working in uniform inflow. This model treats the cavitating flow as a mixture of two fluids behaving as a single one. The set of the governing equations is composed by the (volume) continuity and momentum equations for the mixture, plus a transport equation for the water volume fraction. The mass transfer rate due to cavitation is regulated by the same source term appearing in the (volume) continuity and volume fraction equations. This source term, in CFX, using the default setting is modelled by employing the mass transfer model originally proposed by Zwart et al. [1] (Zwart for brevity). However, in literature several other mass transfer models are available (see [2]). Thus, in order to improve the reliability of the simulations besides the Zwart

References

[1]  P. J. Zwart, A.G. Gerber, and T. Belamri, “A two-phase model for predicting cavitation dynamics,” in Proceedings of the International Conference on Multiphase Flow (ICMF '04), Yokohama, Japan, 2004.
[2]  S. Frikha, O. Coutier-Delgosha, and J. A. Astolfi, “Influence of the cavitation model on the simulation of cloud cavitation on 2D foil section,” International Journal of Rotating Machinery, vol. 2008, Article ID 146234, 12 pages, 2008.
[3]  R. F. Kunz, D. A. Boger, D. R. Stinebring et al., “A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction,” Computers and Fluids, vol. 29, no. 8, pp. 849–875, 2000.
[4]  A. K. Singhal, M. M. Athavale, H. Li, and Y. Jiang, “Mathematical basis and validation of the full cavitation model,” Journal of Fluids Engineering, vol. 124, no. 3, pp. 617–624, 2002.
[5]  M. Morgut, E. Nobile, and I. Bilu?, “Comparison of mass transfer models for the numerical prediction of sheet cavitation around a hydrofoil,” International Journal of Multiphase Flow, vol. 37, no. 6, pp. 620–626, 2011.
[6]  F. Pereira, F. Salvatore, and F. D. Felice, “Measurement and modeling of propeller cavitation in uniform inflow,” Journal of Fluids Engineering, vol. 126, no. 4, pp. 671–679, 2004.
[7]  H. J. Heinke, “Potsdam propeller test case (PPTC), cavitation tests with the model propeller,” Tech. Rep. VP1304, SVA (Potsdam Model Basin), 2011.
[8]  A. H. Koop, Numerical simulation of unsteady three-dimensional sheet cavitation [Ph.D. thesis], University of Twente, 2008.
[9]  Y. A. Bouziad, Phisical modelling of leading edge cavitation: computational methodologies and application to hydraulic machinery [Ph.D. thesis], Ecole Polytechnique Federale de Lausanne, 2005.
[10]  ANSYS, ANSYS CFX-Solver Theory Guide, Release 12.0, 2009.
[11]  H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, the Finite Volume Method, Pearson Education Limited, 2nd edition, 2007.
[12]  J. Blazek, Computational Fluid Dynamics: Principles and Applications, Elsevier, New York, NY, USA, 2nd edition, 2005.
[13]  C. E. Brennen, Fundamentals of Multiphase Flows, Cambridge University Press, New York, NY, USA, 2005.
[14]  http://www.ansys.com.
[15]  http://www.simerics.com.
[16]  T. Huuva, Large eddy simulation of cavitating and non-cavitating flow [Ph.D. thesis], Department of Shipping and Marine Technology, Chalmers University of Technology, Gothenburg, Sweden, 2008.
[17]  C. L. Merkle, J. Feng, and P. E. O. Buelow, “Computational modeling of the dynamics of sheet cavitation,” in Proceedings of the 3rd International Symposium on Cavitation, vol. 2, Grenoble, France, 1998.
[18]  http://www.openfoam.com.
[19]  ESTECO, modeFRONTIER 4 User Manual, 2009.
[20]  A. Clarich, G. Mosetti, V. Pediroda, and C. Poloni, “Application of evolutionary algorithms and statistical analysis in the numerical optimization of an axial compressor,” International Journal of Rotating Machinery, vol. 2, pp. 143–151, 2005.
[21]  Y. T. Shen and P E. Dimotakis, “The influence of surface cavitation on hydrodynamic forces,” in Proceedings of the 22nd American Towing Tank Conference (ATTC '89), pp. 44–453, St. Johns, Canada, 1989.
[22]  S. S. Rao, Engineering Optimization—Theory and Practice, John Wiley & Sons, New York, NY, USA, 1996.
[23]  F. Salvatore H. Streckwall and T. van Terwisga, “Propeller cavitation modelling by CFD-results from the VIRTUE 2008,” in Proceedings of the 1st International Symposium on Cavitation (SMP '09), pp. 362–371, Trondheim, Norway, June 2009.
[24]  G. N. V. B. Vaz, Modelling of sheet cavitation on hydrofoils and marine propellers using boundary element methods [Ph.D. thesis], Universidade Tecnica de Lisboa, 2005.
[25]  R. E. Bensow and G. Bark, “Implicit LES predictions of the cavitating flow on a propeller,” Journal of Fluids Engineering, vol. 132, no. 4, Article ID 041302, 2010.
[26]  http://www.marinepropulsors.com.
[27]  http://www.sva-potsdam.de/pptc.
[28]  U. H. Barkmann, “Potsdam propeller test case (PPTC), open water tests with the model propeller,” Tech. Rep. VP1304, SVA (Potsdam Model Basin), 2011.
[29]  K. P. Mach, “Potsdam propeller test case (PPTC), LDV velocity measurements with the model propeller,” Tech. Rep. VP1304, SVA (Potsdam Model Basin), 2011.
[30]  F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA Journal, vol. 32, no. 8, pp. 1598–1605, 1994.
[31]  N. Berchiche and C.E. Janson, “Grid influence on the propeller open-water performance and flow field,” Ship Technology Research, vol. 55, pp. 87–96, 2008.
[32]  M. Abdel-Maksoud, F. Menter, and H. Wuttke, “Viscous flow simulations for conventional and high-skew marine propellers,” Ship Technology Research, vol. 45, no. 2, pp. 64–71, 1998.
[33]  M. Morgut and E. Nobile, “Influence of grid type and turbulence model on the numerical prediction of the flow around marine propellers working in uniform inflow,” Ocean Engineering, vol. 42, pp. 26–34, 2012.
[34]  M. Morgut and E. Nobile, “Numerical predictions of the cavitating and non-cavitating flow around the model scale propeller pptc,” in Proceedings of the Workshop on Cavitation and Propeller Performance, the 2nd International Symposium on Marine Propulsors (SMP '11), Hamburg, Germany, 2011.
[35]  F. Salvatore, Private communication, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133