This paper deals with the maintenance technique for industrial machinery using the artificial neural network so-called self-organizing map (SOM). The aim of this work is to develop intelligent maintenance system for machinery based on an alternative way, namely, thermal images instead of vibration signals. SOM is selected due to its simplicity and is categorized as an unsupervised algorithm. Following the SOM training, machine fault diagnostics is performed by using the pattern recognition technique of machine conditions. The data used in this work are thermal images and vibration signals, which were acquired from machine fault simulator (MFS). It is a reliable tool and is able to simulate several conditions of faulty machine such as unbalance, misalignment, looseness, and rolling element bearing faults (outer race, inner race, ball, and cage defects). Data acquisition were conducted simultaneously by infrared thermography camera and vibration sensors installed in the MFS. The experimental data are presented as thermal image and vibration signal in the time domain. Feature extraction was carried out to obtain salient features sensitive to machine conditions from thermal images and vibration signals. These features are then used to train the SOM for intelligent machine diagnostics process. The results show that SOM can perform intelligent fault diagnostics with plausible accuracies. 1. Introduction Machine condition monitoring and fault diagnostics are very important for machineries in the industry to guarantee high performance of their functionality. High reliability is needed to reduce product and profit loss because of unwanted downtime. Therefore, machine condition monitoring and fault diagnostics become a critical issue in maintenance activity to ensure availability, minimize operator hazard, and reduce economic losses [1]. For this purpose, several sensors such as vibration sensors, acoustic emission sensors, and temperature sensors are used to fulfill the requirement for machine condition monitoring procedure [2]. The assessment of machine components of critical rotating machines, such as bearings (journal or rolling element), using such sensors is significant for early detection of machine condition. The application of vibration sensors as fundamental tools for machine condition monitoring has been used extensively over a period of approximately four decades [3]. The reason to use these sensors was their effectiveness of measurement process and data analysis that can represent the machine conditions. Vibration signal monitoring of installed
References
[1]
Y. Lei, Z. He, and Y. Zi, “Application of an intelligent classification method to mechanical fault diagnosis,” Expert Systems with Applications, vol. 36, no. 6, pp. 9941–9948, 2009.
[2]
B. Eftekharnejad and D. Mba, “Seeded fault detection on helical gears with acoustic emission,” Applied Acoustics, vol. 70, no. 4, pp. 547–555, 2009.
[3]
A. Barber, Handbook of Noise and Vibration Control, Elsevier Advanced Technology Publications, London, UK, 6th edition, 1992.
[4]
B. S. Yang, D. S. Lim, and J. L. An, “Vibration diagnostic system of rotating machinery using artificial neural network and wavelet transform,” in Proceeding of 13th International Congress on COMADEM, pp. 12–20, Houston, Tex, USA, 2000.
[5]
B. Samanta, “Gear fault detection using artificial neural networks and support vector machines with genetic algorithms,” Mechanical Systems and Signal Processing, vol. 18, no. 3, pp. 625–644, 2004.
[6]
A. K. S. Jardine, D. Lin, and D. Banjevic, “A review on machinery diagnostics and prognostics implementing condition-based maintenance,” Mechanical Systems and Signal Processing, vol. 20, no. 7, pp. 1483–1510, 2006.
[7]
A. Widodo and B. S. Yang, “Support vector machine in machine condition monitoring and fault diagnosis,” Mechanical Systems and Signal Processing, vol. 21, no. 6, pp. 2560–2574, 2007.
[8]
T. Yoshioka and T. Fujiwara, “Application of acoustic emission o detection of rolling bearing failure,” ASME. Production Engineering Division Publication, vol. 14, pp. 55–76, 1984.
[9]
N. Jamaludin, D. Mba, and R. H. Bannister, “Condition monitoring of slow speed rolling element bearings using stress waves,” Journal of Process Mechanical Engineering, vol. 215, no. 4, pp. 245–271, 2001.
[10]
A. Morhain and D. Mba, “Bearing defect diagnosis and acoustic emission,” Proceedings of the Institution of Mechanical Engineers, Part J, vol. 217, no. 4, pp. 257–272, 2003.
[11]
A. Widodo, B. S. Yang, E. Y. Kim, A. C. C. Tan, and J. Mathew, “Fault diagnosis of low speed bearing based on acoustic emission signal and multi-class relevance vector machine,” Nondestructive Testing and Evaluation, vol. 24, no. 4, pp. 313–328, 2009.
[12]
M. H. El-Ghamry, R. L. Reuben, and J. A. Steel, “The development of automated pattern recognition and statistical feature isolation techniques for the diagnosis of reciprocating machinery faults using acoustic emission,” Mechanical Systems and Signal Processing, vol. 17, no. 4, pp. 805–823, 2003.
[13]
S. B. Glavatskih, O. Uusitalo, and D. J. Spohn, “Simultaneous monitoring of oil film thickness and temperature in fluid film bearings,” Tribology International, vol. 34, no. 12, pp. 853–857, 2001.
[14]
S. B. Glavatskih, “A method of temperature monitoring in fluid film bearings,” Tribology International, vol. 37, no. 2, pp. 143–148, 2004.
[15]
H. Kaplan, Practical Applications of Infrared Thermal Sensing and Imaging Equipment, SPIE Publication, 3rd edition, 2007.
[16]
A. Mazioud, L. Ibos, A. Khlaif, and J. F. Durastant, “Detection of rolling bearing degradation using infrared thermography,” in Proceeding of the 9th International Conference on Quanitative Infrared Thermography, Krakow, Poland, July 2008.
[17]
M. Fidali, “An idea of continuous thermographic monitoring of machinery,” in Proceeding of the 9th International Conference on Quantitative Infrared Thermography, Krakow, Poland, July 2008.
[18]
A. M. Younus, A. Widodo, and B. S. Yang, “Evaluation of thermography image data for machine fault diagnosis,” Nondestructive Testing and Evaluation, vol. 25, no. 3, pp. 231–247, 2010.
[19]
A. M. Younus and B. S. Yang, “Intelligent fault diagnosis of rotating machinery using infrared thermal image,” Expert System with Applications, vol. 39, no. 2, pp. 2082–2091, 2011.
[20]
T. Kohonen, Self-Organizing Maps, Springer, Berlin, Germany, 1995.
[21]
N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.
[22]
R. C. Gonzalez and R. E. Woods, Digital Image Processing, Prentice-Hall, Upper Saddle River, NJ, USA, 2nd edition, 2002.
[23]
B. Chanda and D. D. Majumder, Digital Image Processing and Analysis, Prentice-Hall of India Private, New Delhi, India, 2000.
[24]
J. Shao, H. Xin, and J. D. Harmon, “Comparison of image feature extraction for classification of swine thermal comfort behavior,” Computers and Electronics in Agriculture, vol. 19, no. 3, pp. 223–232, 1998.