全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade

DOI: 10.1155/2012/246031

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study presents the numerical fluid-structure interaction (FSI) modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i) discussion of the current state of the art of modelling FSI in gas turbine engines and (ii) development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip. 1. Introduction Blade vibration is an inherent characteristic in the operation of gas turbines, due to the passing of the rotor blades through the trailing wakes from the upstream stator blade stage. This unavoidable blade vibration needs to be taken into account in the design of these engines and as such the measurement of blade vibration is needed. Due to the high operating temperatures, pressures and the rotating environment within a turbine engine, the need for noncontact measuring techniques is apparent. A recent research program has revealed that the gas turbine internal casing pressure, and resulting casing vibration, can be used to determine some characteristics of the internal blade vibration [1, 2]. This work, however, relied on the assumptions that the pressure at the casing surface was not significantly different from that at the blade tip and that the pressure profile developed around the rotor blades followed the blade oscillatory motion. Investigation of the pressure at the casing surface and at the tip of a vibrating rotor blade is undertaken within this paper through a “tuned” three-dimensional one-way fluid-structure interaction (FSI) model of a vibrating turbine blade stage using the commercial numerical code ANSYS (ANSYS Mechanical and ANSYS CFX). This

References

[1]  G. L. Forbes, Non-contact gas turbine blade vibration monitoring using internal pressure and casing response measurements [Ph.D. dissertation], The University of New South Wales, 2010.
[2]  G. L. Forbes and R. B. Randall, “Non-contact gas turbine blade vibration measurement from casing pressure and vibration signals,” in IFToMM-Rotordynamics, Seoul, Korea, 2010.
[3]  A. K. Slone, K. Pericleous, C. Bailey, and M. Cross, “Dynamic fluid-structure interaction using finite volume unstructured mesh procedures,” Computers and Structures, vol. 80, no. 5-6, pp. 371–390, 2002.
[4]  G. Morgenthal, “Fluid-structure interaction in bluff-body aerodynamics and long-span bridge design: phenomena and methods,” Tech. Rep. CUED/D-Struct/TR.187, Cambridge University, 2000.
[5]  M. Heil, A. L. Hazel, and J. Boyle, “Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches,” Computational Mechanics, vol. 43, no. 1, pp. 91–101, 2008.
[6]  P. Le Tallec and J. Mouro, “Fluid structure interaction with large structural displacements,” Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 24-25, pp. 3039–3067, 2001.
[7]  H. Schumucker, F. Flemming, and S. Coulson, “Two-way coupled fluid structure interaction simulation of a propeller turbine,” in Proceedings of the 25th IAHR Symposium on Hydraulic Machinery and Systems, IOP Publishing, 2010.
[8]  T. Biesinger, C. Cornelius, and C. Rube, “Unsteady CFD methods in a commercial solver for turbomachinery applications,” in ASME Conference Proceedings, vol. 7, pp. 2441–2452, 2010.
[9]  G. L. Forbes, O. N. Alshroof, and R. B. Randall, “Gas Turbine blade vibration and casing wall pressure interaction,” in Proceedings of the Australasian Congress on Applied Mechanics (ACAM '10), Perth, Australia, 2010.
[10]  O. N. Alshroof, G. L. Forbes, and R. B. Randall, “Relationship between the pressure at the casing wall and at the blade tip for a vibrating turbine blade,” in Proceedings of the 17th Australasian Fluid Mechanics Conference, Auckland, New Zealand, 2010.
[11]  D. L. Bell and L. He, “Three-dimensional unsteady flow for an oscillating turbine blade and the influence of tip leakage,” Journal of Turbomachinery, vol. 122, no. 1, pp. 93–101, 2000.
[12]  K. C. Hall and K. Ekici, “Computational methods for non-linear unsteady aerodynamics in turbomachinery,” in Proceedings of the 7th IFToMM-Conference on Rotor Dynamics, Vienna, Austria, 2006.
[13]  ANSYS, I., ANSYS CFX-Solver Modeling Guide Version 12.1, 2009.
[14]  S. S. Rao, Mechanical Vibrations, Pearson Prentice Hall, Upper Saddle River, NJ, USA, 4th edition, 2004.
[15]  ANSYS, I., Ansys 11, Structural Guide p. Section 4.3.4.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133