一类中立型捕食者ˉ食饵系统正周期解的存在性
Keywords: 捕食者ˉ食饵系统,中立型,正周期解
Abstract:
运用严格集压缩映射的不动点定理,得到具有HollingⅡ功能性反应中立型捕食者ˉ食饵系统x′1(t)=x1(t)[r(t)-a(t)x1(t)-b(t)x1(t-τ1(t))-c(t)x′1(t-τ1(t))-τ1(t)1+mx1(t)x2(t-σ(t))],x′2(t)=x2(t)[-d(t)+β(t)x1(t-τ2(t))1+mx1(t-τ2(t))]的正周期解存在性的一个判据.
References
[1] | RosenzweigM L.Paradox of enrichment:destabilization of exploitation system in ecological time[J].Science,1969,171:385ˉ387.
|
[2] | Maynard S J.Models in Ecology[M].New York:CambridgeUniv Press,1974.
|
[3] | Holling C S.The functional response of predators to prey density and its role in mimicry and population regulation[J].Mem Ent Soc Cannad,1965,45:3ˉ60.
|
[4] | 陈兰荪,井竹君.捕食者ˉ食饵相互作用微分方程极限环存在性和唯一性[J].科学通报,1984:24(9):521ˉ523.
|
[5] | Hsm S B,Huang TW.Global stability for a class of predatorˉprey system[J].SIAM JApplMath,1995,35:763ˉ783.
|
[6] | LiYongˉkun.Postive periodic solution of a neutral predatorˉprey system[J].AppliedMathematics andMechanics,1999,20(5):545ˉ550.
|
[7] | LiYongˉkun.Postive solution of a periodic delay predatorˉprey system[J].Applied Proc ofAmMath Soc,1999,127(5):1331ˉ1335.
|
[8] | Cac N P,Gatica JA.Fixed point theorems formappings in ordered Banach space[J].JMath AnalAppl,1979,71:547ˉ557.
|
[9] | GuoD.Positive solutions ofnonlinear operator equations and its applications to nonlinear integral equations[J].AdvMath,1984,13:294ˉ310.
|
[10] | 刘立山.半紧1ˉ集压缩映像的不动点定理及应用[J].曲阜师范大学学报:自然科学版,1990,16(3):10ˉ12.
|
[11] | 陈芳启.单调半凝聚映射与半紧1ˉ集压缩映射[J].曲阜师范大学学报:自然科学版,1993,19(2):39ˉ46.
|
[12] | RosenzweigM L,MacArthurR.Graphical representation and stability conditions ofpredatorˉprey interaction[J].Am Nat,1963,97:209ˉ223.
|
[13] | RosenzweigM L.Why the prey curve has a hump[J].Am Nat,1969,103:81ˉ87.
|
[14] | 贾建文,胡宝安.具Ⅱ类功能性反应的非自治捕食扩散系统的全局稳定性[J].生物数学学报,2000,15(4):437ˉ442.
|
[15] | 范猛,王克.一类具有HollingⅡ型功能性反应的捕食者ˉ食饵系统全局周期性解的存在性[J].数学物理学报,2001,A21(4):492ˉ497.
|
[16] | 陈凤德,陈晓星,林兴发,等.一类具有功能性反应的中立型捕食者食饵系统全局正周期解的存在性[J].数学物理学报,2005,A25(7):981ˉ989.
|
[17] | 苟清明.一类捕食者ˉ食饵缀块系统的持久性和全局渐进稳定性[J].四川师范大学学报:自然科学版,2002,25(2):174ˉ177.
|
[18] | 申治华.一类稀疏效应的捕食与食饵系统的分析[J].重庆师范大学学报:自然科学版,2005,22(3):69:75.
|
Full-Text