全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

LiFePO 4 掺杂Mg前后导电性能的理论研究

, PP. 224-228

Keywords: LiFePO4,Mg掺杂,能隙,电子结构,密度泛函理论

Full-Text   Cite this paper   Add to My Lib

Abstract:

由广义梯度近似的密度泛函理论,计算了LiFePO4在Mg掺杂前后的电子结构.结果表明,Fe—O键是较弱的共价键;而P—O键的键级大,键长短,形成的是很强的共价键.掺杂Mg后,键中的共价成分有些减弱.在总态密度中费米能级附近的价带和导带,主要来自于Fe的3d态电子.掺杂物的能隙明显小于纯LiFePO4的能隙,并且掺杂后,发生了红移现象,从而表明掺杂Mg可以提高LiFePO4的导电性能.

References

[1]  Yamada A,HosoyaM,Chung S C,et al.Olivineˉtype cathodes achievements and problems[J].J Power Sources,2003,119/121:232ˉ238.
[2]  PadhiA K,NanjundaswamyK S,Goodenough J B.Phosphoˉolivines as positiveˉelectrodematerials for rechargeable lithium batˉteries[J].J Electrochemical Societ,1997,144(4):1188ˉ1194.
[3]  HuntA,ChingW Y,ChiangYM,et al.Electronic structures ofLiFePO 4 and FePO 4 studied using resonant inelastic Xˉray scatˉtering[J].Phys Rev,2006,B73:205120ˉ1ˉ205120ˉ10.
[4]  Chung S Y,Bloking JT,ChiangYM.Electronically conductive phosphoˉolivines as lithium storage electrodes[J].NatureMateˉrials,2002,1:123ˉ128.
[5]  KalaiselviN,Doh C H,Park CW,et al.A novel approach to exploitLiFePO 4 compound as an ambient temperature high capacity anode material for rechargeable lithium batteries[J].Electrochemistry Communications,2004,6:1110ˉ1113.
[6]  W ang G X,Bewlay S L,Konstantinov K,et al.Physical and electrochemical properties of doped lithium iron phosphate elecˉtrodes[J].Electrochimica Acta,2004,50:443ˉ447.
[7]  ParkK S,Son JT,ChungH T,et al.Surfacemodification by silver coating for improving electrochemical properties ofLiFePO 4 [J].Solid State Communications,2004,129:311ˉ314.
[8]  Ouyang C Y,W ang D Y,Shi S Q,et al.First principles study on Na x Li 1ˉx FePO 4 as cathode material for rechargeable lithium batteries[J].China Phys Lett,2006,23(1):61ˉ64.
[9]  Tang P,Holzwarth N A W.Electronic structure ofFePO 4 ,LiFePO 4 ,and related materials[J].Phys Rev,2003,B68:165107ˉ1ˉ165107ˉ10.
[10]  蔡军,薛卫东,邹乐西.LiH晶体的几何结构及电子结构[J].四川师范大学学报:自然科学版,2005,28(4):459ˉ462.
[11]  KohnW,Sham L J.Selfˉconsistent equations including exchange and correlation effects[J].PhysRev,1965,A140:1133ˉ1138.
[12]  Hammer B,Hansen L B,Norskov J K.Improved adsorption energetics within densityˉfunctional theory using revised PerdewˉBurkeˉErnzerhof functionals[J].Phys Rev,1999,B59:7413ˉ7421.
[13]  StreltsovV A,Belokoneva E L,TsirelsonV G,et al.Multipole analysis of the electron density in triphylite,LiFePO 4 ,usingXˉray diffraction data[J].Acta Crystallographica,1993,B49:147ˉ153.
[14]  HuangH,Yin S C,NazarL F.Approaching theoretical capacity ofLiFePO 4 at room temperature athigh rates[J].Electrochemiˉcal and SolidˉState Letters,2001,4(10):A170.
[15]  Mi C H,Cao G S,Zhao X B.Lowˉcost,oneˉstep process for synthesis of carbonˉcoated LiFePO 4 cathode[J].Materials Letters,2005,59:127ˉ130.
[16]  W ang D Y,LiH,Shi SQ,et al.Improving the rate performance ofLiFePO 4 by Feˉsite doping[J].ElectrochimicaActa,2005,50:2955ˉ2958.
[17]  Sun Y H,Liu D Q,Yu J,et al.Synthesis and electrochemical proper ties ofTiˉdoped nonstoichiometric LiFePO 4 for lithiumˉion battery application[J].Chinese J Inorganic Chemistry,2006,22(9):1711ˉ1714.
[18]  Shi S Q,Liu L J,Ouyang C Y,et al.Enhancement of electronic conductivity ofLiFePO 4 by Cr doping and its identification by firstˉprinciples calculations[J].Phys Rev,2003,B68:195108ˉ1ˉ195108ˉ5.
[19]  VanderbiltD.Soft selfˉconsistent pseudopotentials in a generalized eigenvalue formalism[J].Phys Rev,1990,B41:7892ˉ7895.
[20]  Zhou F,KangK,Maxisch T,et al.The electronic structure and band gap ofLiFePO 4 and LiMnPO 4 [J].Solid State Communiˉcations,2004,132:181ˉ186.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133