一类含扩散项的时滞偏生态模型解的振动性
, PP. 168-171
Keywords: 时滞,扩散,上,下解,偏生态模型,振动性
Abstract:
研究一类时滞偏生态模型解的振动性,利用平均法,通过使用偏泛函微分方程上、下解思想和泛函微分方程振动性理论,获得了其解的正性和关于正平衡态振动的充分条件,推广了文献的结果,并举例说明了所得结果的意义.
References
[1] | W attK D F.Ecology and ResourceManagement[M].New York:McGraw H ill,1968.
|
[2] | Liao X X,Li J.Stability in GilpinˉAyala competitionmodelswith diffusion[J].NonlinearAnalTMA,1997,28(10):1751ˉ1758.
|
[3] | 高正辉,罗李平.具有连续时滞的双曲型偏微分方程解的振动性[J].重庆师范大学学报:自然科学版,2007,24(1):11ˉ14.
|
[4] | 林文贤.一类中立型方程解的振动性[J].四川师范大学学报:自然科学版2007,30(2):178ˉ180.
|
[5] | Pao C V.Systems of parabolic equations with continuous and discrete delays[J].JMath AnalAppl,1997,205(1):157ˉ185.
|
[6] | Ladde G S,Lskshmikantham V,Zhang B G.Oscillation Theory ofDifferential Equations with Deviating Arguments[M].New York:MarcelDekker,1987.
|
[7] | 郑祖庥.泛函微分方程理论[M].合肥:安徽教育出版社,1992.
|
[8] | GopalsamyK,Ladas G.On the oscillation and asymptotic behavior ofN′(t)=N(t)(a+bN(t-T)-cN 2 (t-T))[J].Quart ApplMath,1990,48(3):433ˉ440.
|
[9] | Rodrigues IW.Oscillation and attraction in a differential equation with piecewise constant argument[J].RockyMount JMath,1994,24(1):261ˉ271.
|
[10] | Yan JR,FengQ X.Global attraction and oscillation in a nonlinear delay equation[J].NonlinearAnalTMA,2001,43(1):101ˉ108.
|
[11] | 罗琦.一类偏泛函生态模型解的振动性[J].数学物理学报,1993,13(3):345ˉ352.
|
[12] | Gourley S A,Brition N F.On amodified Volterra population equation with diffusion[J].NonlinearAnalTMA,1993,21(2):389ˉ395.
|
[13] | 李树勇,马知恩.一类含扩散项的时滞生态模型的振动性[J].工程数学学报,2003,20(1):139ˉ142.
|
[14] | 刘兴元.具有正负系数中立型时滞微分方程的振动性[J].四川师范大学学报:自然科学版,2006,29(2):192ˉ196.
|
Full-Text