全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类含扩散项的时滞偏生态模型解的振动性

, PP. 168-171

Keywords: 时滞,扩散,,下解,偏生态模型,振动性

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究一类时滞偏生态模型解的振动性,利用平均法,通过使用偏泛函微分方程上、下解思想和泛函微分方程振动性理论,获得了其解的正性和关于正平衡态振动的充分条件,推广了文献的结果,并举例说明了所得结果的意义.

References

[1]  W attK D F.Ecology and ResourceManagement[M].New York:McGraw H ill,1968.
[2]  Liao X X,Li J.Stability in GilpinˉAyala competitionmodelswith diffusion[J].NonlinearAnalTMA,1997,28(10):1751ˉ1758.
[3]  高正辉,罗李平.具有连续时滞的双曲型偏微分方程解的振动性[J].重庆师范大学学报:自然科学版,2007,24(1):11ˉ14.
[4]  林文贤.一类中立型方程解的振动性[J].四川师范大学学报:自然科学版2007,30(2):178ˉ180.
[5]  Pao C V.Systems of parabolic equations with continuous and discrete delays[J].JMath AnalAppl,1997,205(1):157ˉ185.
[6]  Ladde G S,Lskshmikantham V,Zhang B G.Oscillation Theory ofDifferential Equations with Deviating Arguments[M].New York:MarcelDekker,1987.
[7]  郑祖庥.泛函微分方程理论[M].合肥:安徽教育出版社,1992.
[8]  GopalsamyK,Ladas G.On the oscillation and asymptotic behavior ofN′(t)=N(t)(a+bN(t-T)-cN 2 (t-T))[J].Quart ApplMath,1990,48(3):433ˉ440.
[9]  Rodrigues IW.Oscillation and attraction in a differential equation with piecewise constant argument[J].RockyMount JMath,1994,24(1):261ˉ271.
[10]  Yan JR,FengQ X.Global attraction and oscillation in a nonlinear delay equation[J].NonlinearAnalTMA,2001,43(1):101ˉ108.
[11]  罗琦.一类偏泛函生态模型解的振动性[J].数学物理学报,1993,13(3):345ˉ352.
[12]  Gourley S A,Brition N F.On amodified Volterra population equation with diffusion[J].NonlinearAnalTMA,1993,21(2):389ˉ395.
[13]  李树勇,马知恩.一类含扩散项的时滞生态模型的振动性[J].工程数学学报,2003,20(1):139ˉ142.
[14]  刘兴元.具有正负系数中立型时滞微分方程的振动性[J].四川师范大学学报:自然科学版,2006,29(2):192ˉ196.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133