二阶pˉLaplacian算子方程的正周期解
, PP. 155-158
Keywords: pˉLaplacian算子 ,不动点 ,锥 ,正周期解
Abstract:
证明了二阶pˉLaplacian算子方程(p(u′))′+a(t)f(u)=0,u(0)=u(ω),u′(0)=u′(ω),t∈R(0<ω<1)正周期解的存在性,利用锥上的不动点定理得到了几个充分条件.
References
[1] Henderson S,W angHaiˉgan.Positive solutions for nonlinear eigenvalue problems[J].JMath AnalAppl,1997,208:252ˉ259.
[2] Erbe L H,Hu Shouˉchuan,W angHaiˉgan.Multiple positive solutions of some boundary value problems[J].JMath AnalAppl,1994,184:640ˉ648.
[3] Chen Shunˉqing.J SouthW estChina Norm Univ:Natur Sci,2004,29(5):803ˉ806.
[4] LiYongˉxiang.Positive periodic solutions ofnonlinear second order ordinary differential equations[J].ActaMathematica Sinica,2002,45(3):481ˉ488.
[5] Wong Fu Hsiang.Existence of positive solutions formˉLaplacian Bvps[J].ApplMath Letters,1999,12:11ˉ17.
[6] Guo Daˉjun,Sun Jingˉxian,Liu Zhaoˉli.FunctionalMethod ofNonlinear Ordinary Differential Equations[M].Jinan:Shandong Science and Technology Press,1995.
[7] Erbe L H,W angHaiˉgan.On the existence of positive solutions of ordinary differential equations[J].Proc Am Math Soc,1994,120(3),743ˉ748.
[8] SunW eiˉping,GeW eiˉgao.The existence of positive solutions for a class of nonlinear boundary value problems[J].ActaMathˉematica Sinica,2001,44(4):577ˉ580.
[9] DeimlingK.Nonlinear FunctionalAnalysis[M].Berlin:SpringerˉVerlag,1985.
Full-Text