拓扑空间中有上下界的平衡问题
, PP. 183-186
Keywords: 有上下界的平衡问题 ,广义RˉKKM映象 ,RˉKKM型定理 ,转移紧闭值 ,广义αˉβˉRˉ对角拟凹
Abstract:
应用拓扑空间中的广义RˉKKM型定理,对拓扑空间中有上下界的平衡问题,证明了解的存在性定理.这些定理推广了近期文献中的结果.
References
[1] Giannessi F.Variational Inequalities and Complementarity Problems[M].New York:JW iley Sons,1980:151ˉ186.
[2] Isac G,SehgalV M,Singh S P.An alternate version of a variational inequality[J].Indian JMath,1999,41(1):25ˉ31.
[3] 何蓉华.对有上下界的平衡问题的进一步推广[J].四川师范大学学报:自然科学版,2004,27(2):139ˉ143.
[4] Ding X P.NewHˉKKM theorems and their applications to geometric property,coincidence theorems,minimax inequality andmaxiˉmal elements[J].Indian J Pure ApplMath,1995,26(1):1ˉ19.
[5] Ding X P.Coincidence theorems and equilibria of generalized games[J].Indian J Pure ApplMath,1996,27(1):1057ˉ1071.
[6] Ding Xieˉping.Generalized RˉKKM type theorems in topological spaces and applications[J].J Sichuan NormalUniversity:Natuˉral Science,2005,28(5):505ˉ513. (丁协平.拓扑空间内的广义RˉKKM型定理及其应用(英)[J].四川师范大学学报:自然科学版,2005,28(5):505ˉ513.)
[7] 彭建文.Wˉ空间上的广义向量平衡问题[J].数学研究与评论,2002,22(4):519ˉ524.
[8] 丁协平.乘积Gˉ凸空间内的非空交定理和广义矢量平衡问题组[J].应用数学和力学,2004,25(6):563ˉ571.
[9] 宋奇庆,杨辉.向量拟平衡问题解的存在性及应用[J].贵州大学学报:自然科学版,2005,22(4):359ˉ363.
[10] 丁协平.拓朴空间内有上下界的平衡问题的进一步推广[J].四川师范大学学报:自然科学版,2004,27(6):551ˉ558.
[11] 汪达成.广义区间空间中参数型非紧KKM定理及其在经济平衡问题上的应用[J].大学数学,2005,21(1):43ˉ48.
[12] 郑莲,丁协平.不动点定理在拟平衡问题组中的应用[J].四川师范大学学报:自然科学版,2005,28(4):397ˉ401.
[13] Li J.A lower and upper bounds version of a variational inequality[J].ApplMath Lett,2000,13(15):47ˉ51.
[14] ChadliO,ChiangY,Yao J C.Equilibrium problems with lower and upper bounds[J].ApplMath Lett,2002,15:327ˉ331.
[15] Ding X P.Generalized GˉKKM theorems in generalized convex spaceswith applications[J].JMath AnalAppl,2002,266:21ˉ37.
[16] Ding X P.Generalized LˉKKM type theorems in Lˉconvex spaces and their applications[J].ComputersMath Appl,2002,43:1249ˉ1256.
[17] Ding X P.KKM type theorems and coincidence theorems on Lˉconvex spaces[J].ActaMath Scientia,2002,22(3):419ˉ426.
[18] Deng L,Xia X.Generalized theorems in topological space and their applications[J].JMath AnalAppl,2003,285(2):679ˉ690.
Full-Text