[1] 唐国宁. KGW模型、流行病模型的重正化群方法研究[J]. 广西师范大学学报:自然科学版,1995,13(3):3943. 樊爱军,王开发. 一类具有非线性接触率的种群力学流行病模型分析[J]. 四川师范大学学报:自然科学版,2002,25(3):261263.[3] 黄玉梅,李树勇,潘杰. 具有阶段结构的SIRS传染病模型[J]. 四川师范大学学报:自然科学版,2005,28(1):3133.[4] 郭淑利,江晓武. 由两种不同病毒导致的SIR流行病模型分析[J]. 郑州大学学报:理学版,2006,38(2):58.[5] 王开发,邓国宏,樊爱军. 宿主体内病毒感染的群体动力学研究[C]//陆征一,周义仓. 数学生物学进展. 北京:科学出版社,2006:5873.[6] Wang Kaifa, Wang Wendi. Propagation of HBV with spatial dependence[J]. Math Biosci,2007,210:7895.[7] Ebert D, ZschokkeRohringer C D, Carius H J. Dose effects and densitydependent regulation of two microparasites of Daphniamagna[J]. Oecologia,2000,122:200209.[8] McLean A R, Bostock C J. Scrapie infections initiated at varying doses:an analysis of 117 titration experiments[J]. Phil Trans R Soc Lond B,2000,355:10431050.[9] Spouge J L, Shrager R I, Dimitrov D S. HIV1 infection kinetics in tissue cultures[J]. Math Biosci,1996,138:122.[10] Bonhoeffer S, Coffin J M, Nowak M A. Human immunodeficiency virus drug therapy and virus load[J]. J Virology,1997,71:32753278.[11] Bartholdy C, Christensen J P, Wodarz D,et al. Persistent virus infection despite chronic cytotoxic Tlymphocyte activation in Gamma interferondeficient mice infected with lymphocytic chroriomeningitis virus[J]. J Virology,2000,74:1030410311.[12] Wodarz D, Christensen J P, Thomsen A R. The importance of lytic and nonlytic immune responses in viral infections[J]. Trends in Immunology,2001,23:194200.[13] van den Driessche P, Watmough J. Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission[J]. Math Biosci,2002,180:2948.[14] Tuckwell H C, Wan F Y M. On the behavior of solutions in viral dynamical models[J]. Bio Systems,2004,73:157161.[15] Perelson A S, Nelson P W. Mathematical analysis of HIV1 dynamics in vivo[J]. SIAM Review,1999,41:344.[16] Regoes R R, Ebert D, Bonhoeffer S. Dosedependent infection rates of parasites produce the Allee effect in epidemiology[J]. Proc R Soc Lond B,2002,269:271279.[17] 张锦炎,冯贝叶. 常微分方程几何理论与分支问题[M]. 2版. 北京:北京大学出版社,2000.